41 research outputs found
A new portable monitor for measuring odorous compounds in oral, exhaled and nasal air
<p>Abstract</p> <p>Background</p> <p>The B/B Checker<sup>®</sup>, a new portable device for detecting odorous compounds in oral, exhaled, and nasal air, is now available. As a single unit, this device is capable of detecting several kinds of gases mixed with volatile sulfur compounds (VSC) in addition to other odorous gasses. The purpose of the present study was to evaluate the effectiveness of the B/B Checker<sup>® </sup>for detecting the malodor level of oral, exhaled, and nasal air.</p> <p>Methods</p> <p>A total of 30 healthy, non-smoking volunteers (16 males and 14 females) participated in this study. The malodor levels in oral, exhaled, and nasal air were measured using the B/B Checker<sup>® </sup>and by organoleptic test (OT) scores. The VSCs in each air were also measured by gas chromatography (GC). Associations among B/B Checker<sup>® </sup>measurements, OT scores and VSC levels were analyzed using Spearman correlation coefficients. In order to determine the appropriate B/B Checker<sup>® </sup>level for screening subjects with malodor, sensitivity and specificity were calculated using OT scores as an identifier for diagnosing oral malodor.</p> <p>Results</p> <p>In oral and nasal air, the total VSC levels measured by GC significantly correlated to that measured by the B/B Checker<sup>®</sup>. Significant correlation was observed between the results of OT scores and the B/B Checker<sup>® </sup>measurements in oral (r = 0.892, p < 0.001), exhaled (r = 0.748, p < 0.001) and nasal air (r = 0.534, p < 0.001). The correlation between the OT scores and VSC levels was significant only for oral air (r = 0.790, p < 0.001) and nasal air (r = 0.431, p = 0.002); not for exhaled air (r = 0.310, p = 0.096). When the screening level of the B/B Checker<sup>® </sup>was set to 50.0 for oral air, the sensitivity and specificity were 1.00 and 0.90, respectively. On the other hand, the screening level of the B/B Checker<sup>® </sup>was set to 60.0 for exhaled air, the sensitivity and specificity were 0.82 and 1.00, respectively.</p> <p>Conclusion</p> <p>The B/B Checker<sup>® </sup>is useful for objective evaluation of malodor in oral, exhaled and nasal air and for screening subjects with halitosis.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01139073">NCT01139073</a></p
Effects of exercise training on gingival oxidative stress in obese rats
Abstract Objective: The purpose of the present study was to investigate the effects of exercise training on serum reactive oxygen species (ROS) level and gingival oxidative stress in obese rats fed a high-fat diet. Design: Rats were divided into three groups (n=14/group): one control group (fed a regular diet) and two experimental groups (fed a high-fat diet with and without exercise training [treadmill: 5 days/week]). The rats were sacrificed at 4 or 8 weeks. The level of serum reactive oxidative metabolites (ROM) was measured as an indicator of circulating ROS. The level of 8-hydroxydeoxyguanosine (8-OHdG) and reduced-form glutathione (GSH)/oxidized-form glutathione (GSSG) ratio were determined to evaluate gingival oxidative stress. Results: The obese rats fed a high-fat diet without exercise training showed higher serum ROM levels [Carratelli Units (CARR U)] (mean ±SD; 413 ±64) than the control (333 ±12) at 4 weeks (p= 0.023). Such a condition resulted in higher 8-OHdG levels (ng/mg mtDNA) (0.97 ±0.18) (p< 0.05) and a lower GSH/GSSG ratio (17.0 ±3.1) (p< 0.05) in gingival tissues, compared to the control (0.55 ±0.13 for 8-OHdG and 23.6 ±5.8 for GSH/GSSG ratio) at 8 weeks. In addition, the obese rats fed a high-fat diet with exercise training showed lower serum ROM (623 ±103) (p< 0.001) and gingival 4 8-OHdG levels (0.69 ±0.17) (p= 0.012) than those without exercise training (1105 ±95 for ROM and 0.55 ±0.13 for 8-OHdG) at 8 weeks. Conclusions: Obesity prevention by exercise training may effectively suppress gingival oxidative stress by decreasing serum ROS in rats
Non-inflammatory destructive periodontal disease: a clinical, microbiological, immunological and genetic investigation
Periodontitis comprises a group of multifactorial diseases in which periodontopathogens accumulate in dental plaque and trigger host chronic inflammatory and immune responses against periodontal structures, which are determinant to the disease outcome. Although unusual cases of non-inflammatory destructive periodontal disease (NIDPD) are described, their pathogenesis remains unknown. A unique NIDPD case was investigated by clinical, microbiological, immunological and genetic tools. The patient, a non-smoking dental surgeon with excessive oral hygiene practice, presented a generalized bone resorption and tooth mobility, but not gingival inflammation or occlusion problems. No hematological, immunological or endocrine alterations were found. No periodontopathogens (A. actinomycetemcomitans, P. gingivalis, F. nucleatum and T. denticola) or viruses (HCMV, EBV-1 and HSV-1) were detected, along with levels of IL-1β and TNF-a in GCF compatible with healthy tissues. Conversely ALP, ACP and RANKL GCF levels were similar to diseased periodontal sites. Genetic investigation demonstrated that the patient carried some SNPs, as well HLA-DR4 (*0404) and HLA-B27 alleles, considered risk factors for bone loss. Then, a less vigorous and diminished frequency of toothbrushing was recommended to the patient, resulting in the arrest of alveolar bone loss, associated with the return of ALP, ACP and RANKL in GCF to normality levels. In conclusion, the unusual case presented here is compatible with the previous description of NIDPD, and the results that a possible combination of excessive force and frequency of mechanical stimulation with a potentially bone loss prone genotype could result in the alveolar bone loss seen in NIDPD