1,817 research outputs found

    Superconductivity in S-substituted FeTe

    Full text link
    We have successfully synthesized a new superconducting phase of FeTe1-xSx with a PbO-type structure. It has the simplest crystal structure in iron-based superconductors. Superconducting transition temperature is about 10 K at x = 0.2. The upper critical field Hc2 was estimated to be ~70 T. The coherent length was calculated to be ~2.2 nm. Because FeTe1-xSx is composed of nontoxic elements, this material is a candidate for applications and will activate more and more research on iron-based superconductor.Comment: 13 pages, 10 figure

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Commensurate-Incommensurate transition in the melting process of the orbital ordering in Pr0.5Ca0.5MnO3: neutron diffraction study

    Full text link
    The melting process of the orbital order in Pr0.5Ca0.5MnO3 single crystal has been studied in detail as a function of temperature by neutron diffraction. It is demonstrated that a commensurate-incommensurate (C-IC) transition of the orbital ordering takes place in a bulk sample, being consistent with the electron diffraction studies. The lattice structure and the transport properties go through drastic changes in the IC orbital ordering phase below the charge/orbital ordering temperature Tco/oo, indicating that the anomalies are intimately related to the partial disordering of the orbital order, unlike the consensus that it is related to the charge disordering process. For the same T range, partial disorder of the orbital ordering turns on the ferromagnetic spin fluctuations which were observed in a previous neutron scattering study.Comment: 5 pages, 2 figures, REVTeX, to be published in Phys. Rev.

    Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order

    Full text link
    Femtosecond reflection spectroscopy was performed on a perovskite-type manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order (CO/OO). Immediately after the photoirradiation, a large increase of the reflectivity was detected in the mid-infrared region. The optical conductivity spectrum under photoirradiation obtained from the Kramers-Kronig analyses of the reflectivity changes demonstrates a formation of a metallic state. This suggests that ferromagnetic spin arrangements occur within the time resolution (ca. 200 fs) through the double exchange interaction, resulting in an ultrafast CO/OO to FM switching.Comment: 4 figure

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films

    Get PDF
    We have grown Pr0.67Ca0.33MnO3 thin films on LaAlO3 using pulsed laser deposition. Below 50 K, a field induced insulator-metal transition results in changes in resistivity of at least 6 orders of magnitude. The field induced conducting state is metastable at low temperature. The temperature dependence of the resistivity exhibits considerable hysteresis in a field of 40 kOe but becomes reversible in a field of 80 kOe

    Effects of Unilateral Compound-Eye Removal on the Photoperiodic Responses of Nymphal Development in the Cricket Modicogryllus siamensis

    Get PDF
    The cricket, Modicogryllus siamensis, shows clear photoperiodic responses at 25 degrees C in nymphal development. Under long-day conditions (LD16:8), nymphs became adults about 50 days after hatching, while under short-day conditions (LD8:16) the duration of nymphal stage extended to more than 130 days. Under constant dark conditions, two developmental patterns were observed: about 60% of crickets became adults slightly slower than under the long-day conditions, and the rest at later than 100 days after hatching, like those under the short-day conditions. When the compound eye was unilaterally removed on the 2nd day of hatching, an increase of molting and an extension of the nymphal period were observed under the long-day conditions, while under the short-day conditions, some crickets developed faster and others slower than intact crickets. These results suggest that this cricket receives photoperiodic information through the compound eye, that a pair of the compound eyes is required for a complete photoperiodic response, and that interaction between bilateral circadian clocks may be also involved in the response

    Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe1-xCox)2As2

    Full text link
    We investigated the anisotropy in the in-plane optical spectra of detwinned Ba(Fe1-xCox)2As2. The optical conductivity spectrum of BaFe2As2 shows appreciable anisotropy in the magnetostructural ordered phase, whereas the dc resistivity is almost isotropic at low temperatures. Upon Co doping, the resistivity becomes highly anisotropic, while the finite-energy intrinsic anisotropy is suppressed. It is found that anisotropy in resistivity arises from anisotropic impurity scattering from doped Co atoms, extrinsic in origin. Intensity of a specific optical phonon mode is also found to show striking anisotropy in the ordered phase. The anisotropy induced by Co impurity and that observed in the optical phonon mode are hallmarks of the highly polarizable electronic state in the ordered phase.Comment: 5 pages, 4 figure

    Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites

    Full text link
    The role of lattice distortion in the charge, orbital and spin ordering in half doped manganites has been investigated. For fixed magnetic ordering, we show that the cooperative lattice distortion stabilize the experimentally observed ordering even when the strong on-site electronic correlation is taken into account. Furthermore, without invoking the magnetic interactions, the cooperative lattice distortion alone may lead to the correct charge and orbital ordering including the charge stacking effect, and the magnetic ordering can be the consequence of such a charge and orbital ordering. We propose that the cooperative nature of the lattice distortion is essential to understand the complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure
    • …
    corecore