4,987 research outputs found
Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins
Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f
is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed
electron spin resonance technique, thereby the effect of environmental 29^Si
nuclear spins on the donor electron spin is systematically studied. The
linewidth as a function of f shows a good agreement with theoretical analysis.
We also report the phase memory time T_M of the donor electron spin dependent
on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure
TOPkit: An Online Faculty Development Resource
Faculty preparation is a critical success factor for any program that involves online teaching and learning (Kane, Shaw, & Pang, 2016; Merillat & Scheibmeir, 2016; Parker, Maor, & Herrington, 2013). Although experts in their respective fields, faculty may not have studied online pedagogy or instructional design before stepping into the onsite or online classroom. While few educators would argue against offering faculty development, institutions grapple with limited funding and campus resources (e.g., limited space, scheduling constraints) for faculty training. To pool resources for this purpose, the State University System of Florida Board of Governors committed to sponsoring a program to develop an online toolkit and annual workshop to support faculty development efforts statewide. The result was The Teaching Online Preparation Toolkit (TOPkit), an open educational resource (website and two free, customizable online faculty development courses) that faculty developers anywhere can use. This article describes the online toolkit and specifically highlights the toolkit’s pair of sample courses that may be downloaded and customized
Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: Effects of ACEI and ARB
Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: Effects of ACEI and ARB.BackgroundAngiotensin II (Ang II) can up-regulate nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase, whose product superoxide anion (O2-) can interact with nitric oxide (NO) to form peroxynitrite (ONOO-). We tested the hypothesis that Ang II subtype 1 (AT1) receptor activation enhances oxidative stress and nitrotyrosine deposition in the kidneys of rats with diabetes mellitus (DM).MethodsAfter two weeks of streptozotocin-induced DM, rats received either no treatment, an angiotensin-converting enzyme inhibitor (ACEI) or an angiotensin receptor blocker (ARB) for two weeks. At four weeks, renal expression of the p47phox component of NAD(P)H oxidase, endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), and nitrotyrosine were evaluated by Western blot and immunohistochemistry and related to plasma lipid peroxidation products (LPO), hydrogen peroxide production in the kidney and 24-hour protein excretion.ResultsImmunoreactive expression of p47phox and eNOS were increased in DM with an increase in plasma LPO, renal hydrogen peroxide production and nitrotyrosine deposition. Expression of nNOS was unaltered. Treatment with either ACEI or ARB prevented all these findings and also prevented significant microalbuminuria. The treatments did not affect the elevated blood sugar, nor did DM or its treatment affect the blood pressure or the creatinine clearance.ConclusionEarly proteinuric diabetic nephropathy increases renal expression of the p47phox component of NAD(P)H oxidase and eNOS with increased indices of systemic and renal oxidative/nitrosative stress. An ACEI or an ARB prevents these changes and prevents the development of proteinuria, independent of blood pressure or blood sugar. This finding indicates a pathogenic role for AT1 receptors in the development of oxidative damage in the kidneys during early DM
Host isotope mass effects on the hyperfine interaction of group-V donors in silicon
The effects of host isotope mass on the hyperfine interaction of group-V
donors in silicon are revealed by pulsed electron nuclear double resonance
(ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the
hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits
further into multiple components, whose relative intensities accurately match
the statistical likelihood of the nine possible average Si masses in the four
nearest-neighbor sites due to random occupation by the three stable isotopes
Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the
resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl
Presence of contagious yawning in children with Autism Spectrum Disorder
Most previous studies suggest diminished susceptibility to contagious yawning in children with autism spectrum disorder (ASD). However, it could be driven by their atypical attention to the face. To test this hypothesis, children with ASD and typically developing (TD) children were shown yawning and control movies. To ensure participants' attention to the face, an eye tracker controlled the onset of the yawning and control stimuli. Results demonstrated that both TD children and children with ASD yawned more frequently when they watched the yawning stimuli than the control stimuli. It is suggested therefore that the absence of contagious yawning in children with ASD, as reported in previous studies, might relate to their weaker tendency to spontaneously attend to others' faces
Recommended from our members
Nuclear spin decoherence of neutral P-31 donors in silicon: Effect of environmental Si-29 nuclei
Spectral diffusion arising from Si29 nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on P31 nuclear spin coherence is measured as a function of Si29 concentration using X-band pulsed electron nuclear double resonance. The P31 nuclear spin echo decays show that decoherence is controlled by Si29 flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% Si29 to 3 s in crystals containing 1% Si29. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors “protects” the donor nuclear spins by suppressing Si29 flip-flops within a “frozen core,” as a result of the detuning of the Si29 spins caused by their hyperfine coupling to the electron spin
“Who Cares?”: the acceptance of decentralized wastewater systems in regions without water problems
There is a growing interest in decentralized wastewater treatment systems, especially in regions with water scarcity problems or water management issues. This study aims to determine whether the perceived advantages and disadvantages (leading to acceptance) of decentralized wastewater plants in such regions are the same in regions where the population is not aware of these water issues. Firstly, this study systematically reviews previous findings on public perceptions of the acceptance of decentralized wastewater treatment systems. Then, the study details the results of a focus group study to determine whether the elements identified in the literature are also relevant in a region where people are unaware of water problems. The results show that a lack of awareness of water issues seems to be a critical factor influencing acceptance. Reframing the usefulness of these systems by focusing on other aspects, such as environmental sustainability, is key.info:eu-repo/semantics/publishedVersio
- …