47 research outputs found

    Selective Reduction of Post-Selection CD8 Thymocyte Proliferation in IL-15Rα Deficient Mice

    Get PDF
    Peripheral CD8+ T cells are defective in both IL-15 and IL-15Rα knock-out (KO) mice; however, whether IL-15/IL-15Rα deficiency has a similar effect on CD8 single-positive (SP) thymocytes remains unclear. In this study, we investigated whether the absence of IL-15 transpresentation in IL-15Rα KO mice results in a defect in thymic CD8 single positive (SP) TCRhi thymocytes. Comparison of CD8SP TCRhi thymocytes from IL-15Rα KO mice with their wild type (WT) counterparts by flow cytometry showed a significant reduction in the percentage of CD69− CD8SP TCRhi thymocytes, which represent thymic premigrants. In addition, analysis of in vivo 5-bromo-2-deoxyuridine (BrdU) incorporation demonstrated that premigrant expansion of CD8SP TCRhi thymocytes was reduced in IL-15Rα KO mice. The presence of IL-15 transpresentation-dependent expansion in CD8SP TCRhi thymocytes was assessed by culturing total thymocytes in IL-15Rα-Fc fusion protein-pre-bound plates that were pre-incubated with IL-15 to mimic IL-15 transpresentation in vitro. The results demonstrated that CD8SP thymocytes selectively outgrew other thymic subsets. The contribution of the newly divided CD8SP thymocytes to the peripheral CD8+ T cell pool was examined using double labeling with intrathymically injected FITC and intravenously injected BrdU. A marked decrease in FITC+ BrdU+ CD8+ T cells was observed in the IL-15Rα KO lymph nodes. Through these experiments, we identified an IL-15 transpresentation-dependent proliferation process selective for the mature CD8SP premigrant subpopulation. Importantly, this process may contribute to the maintenance of the normal peripheral CD8+ T cell pool

    Distribution and metabolism of intravenously administered trefoil factor 2/porcine spasmolytic polypeptide in the rat

    No full text
    Background—Trefoil peptides are secreted by mucus producing cells in the gastrointestinal tract and are supposed to be involved in oligomerisation processes of the mucin glycoproteins in the lumen. Endocrine functions have also been suggested. 
Aims—To target possible binding sites for iodine-125 labelled porcine spasmolytic polypeptide (pSP) in an in vivo rat model. 
Methods—(125)I-pSP was given by intravenous injection to female Spraque-Dawley rats. The distribution of (125)I-pSP was assessed by gamma counting of samples of organs and by autoradiography of paraffin wax embedded sections. The degradation of (125)I-pSP was studied by trichloroacetic acid precipitation, and the saturability of binding by administration of excess unlabelled peptide. 
Results—(125)I-pSP was taken up in the kidneys and the gastrointestinal tract and was excreted almost unmetabolised in the urine. In the stomach, it could be displaced by unlabelled pSP in a dose dependent manner. Autoradiography showed grains in mucous neck cells, parietal cells, the mucus layer, and the pyloric glands of the stomach; in Brunner's glands and the Paneth cells in the small intestine; and in cells in the lower part of the crypts in the colon. 
Conclusions—(125)I-pSP from the circulatory system is taken up by mucus producing cells in the gastrointestinal tract. The binding can be displaced by non-radioactive pSP, suggesting the presence of a receptor. 

 Keywords: trefoil peptides; trefoil factor 2; spasmolytic polypeptide; metabolism; autoradiography; ra

    Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: effects of dietary fibre

    No full text
    BACKGROUND/AIMS—Dietary fibre influence growth and function of the upper gastrointestinal tract. This study investigates the importance of dietary fibre in intestinal growth in experimental diabetes, and correlates intestinal growth with plasma levels of the intestinotrophic factor, glucagon-like peptide 2 (GLP-2).
METHODS—Male Wistar rats were randomised to the following groups: two streptozotocin-diabetic and two control groups fed either a fibre-containing or a fibre-free diet for three weeks. Intestinal weight, length, and morphometric data (villus height, villus area, crypt depth) were measured. Blood samples were obtained after two weeks for measurement of GLP-2 and enteroglucagon (glicentin, oxyntomodulin).
RESULTS—The mean daily consumption of food in the two diabetic groups was 40% higher than in controls. In diabetic rats fed fibre, the increase in intestinal weight from day 0 to 20 was sixfold greater than that of the controls and small intestine weight per cm length was increased by 50%. In the diabetic rats fed a fibre-free diet, intestinal growth was 30% less than in diabetic rats fed fibre, and intestinal weight increased only threefold compared with controls. Morphometric data showed that the intestinal increase in diabetic rats fed fibre was due primarily to growth of the mucosal layer. Villus height and crypt depth increased 60% and 40% respectively, but by only 20% in fibre-free diabetic rats. The plasma levels of GLP-2 parallelled diabetic intestinal growth, whereas plasma levels of enteroglucagon increased regardless of the extent of intestinal growth.
CONCLUSIONS—Intestinal growth in experimental diabetes is strongly influenced by the presence of dietary fibre. The effect may be mediated by GLP-2.


Keywords: small intestine; intestinal adaptation; growth factors; dietary fibre; diabetes mellitus; ra

    Metabolism of oral trefoil factor 2 (TFF2) and the effect of oral and parenteral TFF2 on gastric and duodenal ulcer healing in the rat

    No full text
    BACKGROUND—Trefoil factors (TFFs) are peptides produced by mucus-secreting cells in the gastrointestinal tract. A functional association between these peptides and mucus, leading to stabilisation of the viscoelastic gel overlying the epithelia, has been suggested. Both oral and parenteral administration of the peptides increase the resistance of the gastric mucosa.
AIM—To study the effect in rats of oral and parenteral porcine trefoil factor 2 (pTFF2) on the healing of gastric and duodenal ulcerations and to clarify the distribution and metabolism of orally administered pTFF2 in the gastrointestinal tract.
METHODS—Gastric ulcers were induced in female Sprague-Dawley rats by indomethacin and duodenal ulcers by mercaptamine. The rats were treated for up to seven days with oral or subcutaneous pTFF2. Ulcer size after treatment was assessed by stereomicroscopy after whole mount staining with periodic acid-Schiff stain. (125)I-labelled pTFF2 was given orally to rats, and tissues were investigated by gamma counting of samples and by autoradiography of paraffin embedded sections.
RESULTS—pTFF2 accelerated gastric ulcer healing after both oral and subcutaneous administration. Duodenal ulcers were aggravated by both treatments. After oral administration of (125)I-pTFF2, intact peptide was recovered from the superficial part of the mucus layer in the stomach; it passed through the small intestine but was degraded in the caecum. Only a minor part of the labelled pTFF2 entered the colon and was excreted in the faeces. Most of the label was excreted in the urine.
CONCLUSIONS—Oral as well as parenteral pTFF2 accelerates the healing of gastric ulceration and aggravates duodenal ulcers. Oral pTFF2 binds to the mucus layer of the stomach and the small intestine but does not reach the colonic mucosa.


Keywords: trefoil factors; spasmolytic polypeptide; ulcer healing; gastric ulcer; duodenal ulcer; ra
    corecore