9,645 research outputs found

    Fundamental approach to laminar flame propagation

    Get PDF
    The complete system of equations for a theory of laminar flame equations is presented, taking into account both heat conduction and diffusion, for the case of an arbitrary number of simultaneous reactions. The eigenvalue problem determining the flame velocity is formulated. Two examples are given in order to show that explicit analytical expressions for the flame velocity can be obtained, which are in good agreement with the results obtained by numerical integration of the equations. In the first example (hydrazine decomposition) one reaction is considered as global, i.e., rate-controlling, reaction. In the second example (ozone decomposition) a hypothesis is introduced for the concentration of the free radical O, which corresponds to the steady-state approximation generally used in classical chemical kinetics. In both cases approximate explicit formulae are obtained for the flame velocity using legitimate approximation methods, without making drastic assumptions. The steady-state assumption used for the ozone flame has a bearing on a better understanding of the mechanism of chain reactions in general. The method indicated in the paper gives hope that the more complicated chain reactions, such as the combustion of hydrocarbons, will also be made accessible to theoretical computation

    Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing

    Full text link
    Multiple-input multiple-output (MIMO) systems are well suited for millimeter-wave (mmWave) wireless communications where large antenna arrays can be integrated in small form factors due to tiny wavelengths, thereby providing high array gains while supporting spatial multiplexing, beamforming, or antenna diversity. It has been shown that mmWave channels exhibit sparsity due to the limited number of dominant propagation paths, thus compressed sensing techniques can be leveraged to conduct channel estimation at mmWave frequencies. This paper presents a novel approach of constructing beamforming dictionary matrices for sparse channel estimation using the continuous basis pursuit (CBP) concept, and proposes two novel low-complexity algorithms to exploit channel sparsity for adaptively estimating multipath channel parameters in mmWave channels. We verify the performance of the proposed CBP-based beamforming dictionary and the two algorithms using a simulator built upon a three-dimensional mmWave statistical spatial channel model, NYUSIM, that is based on real-world propagation measurements. Simulation results show that the CBP-based dictionary offers substantially higher estimation accuracy and greater spectral efficiency than the grid-based counterpart introduced by previous researchers, and the algorithms proposed here render better performance but require less computational effort compared with existing algorithms.Comment: 7 pages, 5 figures, in 2017 IEEE International Conference on Communications Workshop (ICCW), Paris, May 201

    Bayesian Non-Parametric Inference for Infectious Disease Data

    Full text link
    We propose a framework for Bayesian non-parametric estimation of the rate at which new infections occur assuming that the epidemic is partially observed. The developed methodology relies on modelling the rate at which new infections occur as a function which only depends on time. Two different types of prior distributions are proposed namely using step-functions and B-splines. The methodology is illustrated using both simulated and real datasets and we show that certain aspects of the epidemic such as seasonality and super-spreading events are picked up without having to explicitly incorporate them into a parametric model

    73 GHz Wideband Millimeter-Wave Foliage and Ground Reflection Measurements and Models

    Full text link
    This paper presents 73 GHz wideband outdoor foliage and ground reflection measurements. Propagation measurements were made with a 400 Megachip-per-second sliding correlator channel sounder, with rotatable 27 dBi (7 degrees half- power beamwidth) horn antennas at both the transmitter and receiver, to study foliage-induced scattering and de-polarization effects, to assist in developing future wireless systems that will use adaptive array antennas. Signal attenuation through foliage was measured to be 0.4 dB/m for both co- and cross-polarized antenna configurations. Measured ground reflection coefficients for dirt and gravel ranged from 0.02 to 0.34, for incident angles ranging from 60 degrees to 81 degrees (with respect to the normal incidence of the surface). These data are useful for link budget design and site-specific (ray-tracing) models for future millimeter-wave communication systems.Comment: 6 pages, 4 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop
    • …
    corecore