113 research outputs found

    A Novel Frequency Analysis Method for Assessing Kir2.1 and Nav1.5 Currents

    Get PDF
    Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, Kir2.1, and the channel encoding the cardiac fast sodium current, Nav1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses

    Overfeeding, Autonomic Regulation and Metabolic Consequences

    Get PDF
    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.

    Covalent Attachment of Proteins to Solid Supports and Surfaces via Sortase-Mediated Ligation

    Get PDF
    BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays

    Croisement spatial et temporel de données issues d'activités délictueuses et d'appareils permettant une géolocalisation

    No full text
    Dans le cadre d'enquêtes judiciaires, la police est amenée à exploiter des surveillances de télécommunications, désormais en majorité sur des téléphones mobiles. En Suisse, les données fournies par les opérateurs de téléphonie mobile doivent contenir l'emplacement des antennes activées. Cette information spatiale permet de suivre les déplacements (dans le temps et l'espace) du mobile et par extension de son utilisateur. La police exploite également des informations obtenues à partir d'appareils GPS, qui fournissent également des informations sur le déplacement d'un suspect. Confronté à une très grande quantité de données, l'enquêteur investit beaucoup de temps dans la vérification systématique de la proximité d'infractions enregistrées par la police avec la localisation de téléphones mobiles ou de GPS. La méthode proposée vise à réduire significativement le nombre de contrôles humains en automatisant cette comparaison systématique. L'algorithme développé utilise la théorie des graphes pour sélectionner uniquement les infractions compatibles dans l'espace et le temps avec le déplacement du téléphone mobile, respectivement du GPS
    corecore