870 research outputs found

    Discovery of Li2(Pd,Pt)3B superconductors

    Full text link
    Critical temperature Tc of the Li2(Pd1-xPtx)3B was reported to be 7-8K for x=0 and 2.2-2.8K for x=1. In this article we present our preliminary results on behavior of magnetization-temperature curves with starting composition of Pd-B precursor, y-Li concentration in LiyPd3B and post-annealing of the Pd-end compound. Results suggest that to maximize Tc ratio Pd:B should be close to 3:1, while y-Li has to be optimum. The lowest Tc for LiyPd3B was 4.4-4.6K, while post-annealings at 560 deg. C allowed enhancement of Tc up to 8.2-8.4K. Compositions Li2Z3B with Z=Ni, Ru, Rh, Re, Ag are not superconducting down to 1.8K. Exception is composition with Re showing superconductivity due to Re3B compound. All samples were prepared by arc melting.Comment: 6 pages, 5 figs. presented at M2S, 200

    Thermo-magnetic history effects in the vortex state of YNi_2B_2C superconductor

    Get PDF
    The nature of five-quadrant magnetic isotherms for is different from that for in a single crystal of YNi2B2C, pointing towards an anisotropic behaviour of the flux line lattice (FLL). For, a well defined peak effect (PE) and second magnetization peak (SMP) can be observed and the loop is open prior to the PE. However, for, the loop is closed and one can observe only the PE. We have investigated the history dependence of magnetization hysteresis data for by recording minor hysteresis loops. The observed history dependence in across different anomalous regions are rationalized on the basis of su-perheating/supercooling of the vortex matter across the first-order-like phase transition and possible additional effects due to annealing of the disordered vortex bundles to the underlying equilibrium state.Comment: 4 pages, 4 figure

    Superconductivity in metal rich Li-Pd-B ternary Boride

    Full text link
    8K superconductivity was observed in the metal rich Li-Pd-B ternary system. Structural, microstructural, electrical and magnetic investigations for various compositions proved that Li2Pd3B compound, which has a cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has high density, is stable in the air and has an upper critical field, Hc2(0), of 6T.Comment: 4 pages, 5 figur

    Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities

    Full text link
    We calculate the intersubband absorption linewidth in quantum wells (QWs) due to scattering by interface roughness, LO phonons, LA phonons, alloy disorder, and ionized impurities, and compare it with the transport energy broadening that corresponds to the transport relaxation time related to electron mobility. Numerical calculations for GaAs QWs clarify the different contributions of each individual scattering mechanism to absorption linewidth and transport broadening. Interface roughness scattering contributes about an order of magnitude more to linewidth than to transport broadening, because the contribution from the intrasubband scattering in the first excited subband is much larger than that in the ground subband. On the other hand, LO phonon scattering (at room temperature) and ionized impurity scattering contribute much less to linewidth than to transport broadening. LA phonon scattering makes comparable contributions to linewidth and transport broadening, and so does alloy disorder scattering. The combination of these contributions with significantly different characteristics makes the absolute values of linewidth and transport broadening very different, and leads to the apparent lack of correlation between them when a parameter, such as temperature or alloy composition, is changed. Our numerical calculations can quantitatively explain the previously reported experimental results.Comment: 17 pages, including 15 figure

    Magnetic-Field-Induced Localization of Quasiparticles in Underdoped La2x_{2-x}Srx_xCuO4_4 Single Crystals

    Full text link
    Magnetic-field-induced ordering of electrons around vortices is a striking phenomenon recently found in high-TcT_c cuprates. To identify its consequence in the quasiparticle dynamics, the magnetic-field (HH) dependence of the low-temperature thermal conductivity κ\kappa of La2x_{2-x}Srx_xCuO4_4 crystals is studied for a wide doping range. It is found that the behavior of κ(H)\kappa(H) in the sub-Kelvin region changes drastically across optimum doping, and the data for underdoped samples are indicative of unusual magnetic-field-induced localization of quasiparticles; this localization phenomenon is probably responsible for the unusual "insulating normal state" under high magnetic fields.Comment: 4 pages, 4 figures, final version published in PR
    corecore