7,367 research outputs found
CP^1+U(1) Lattice Gauge Theory in Three Dimensions: Phase Structure, Spins, Gauge Bosons, and Instantons
In this paper we study a 3D lattice spin model of CP Schwinger-bosons
coupled with dynamical compact U(1) gauge bosons. The model contains two
parameters; the gauge coupling and the hopping parameter of CP bosons. At
large (weak) gauge couplings, the model reduces to the classical O(3) (O(4))
spin model with long-range and/or multi-spin interactions. It is also closely
related to the recently proposed "Ginzburg-Landau" theory for quantum phase
transitions of quantum spin systems on a 2D square lattice at zero
temperature. We numerically study the phase structure of the model by
calculating specific heat, spin correlations, instanton density, and
gauge-boson mass. The model has two phases separated by a critical line of
second-order phase transition; O(3) spin-ordered phase and spin-disordered
phase. The spin-ordered phase is the Higgs phase of U(1) gauge dynamics,
whereas the disordered phase is the confinement phase. We find a crossover in
the confinement phase which separates dense and dilute regions of instantons.
On the critical line, spin excitations are gapless, but the gauge-boson mass is
{\it nonvanishing}. This indicates that a confinement phase is realized on the
critical line. To confirm this point, we also study the noncompact version of
the model. A possible realization of a deconfinement phase on the criticality
is discussed for the CP+U(1) model with larger .Comment: Discussion of finite size scaling, O(4) spin correlation adde
Beyond homozygosity mapping: family-control analysis based on Hamming distance for prioritizing variants in exome sequencing
A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks
Flexible control of the Peierls transition in metallic C polymers
The metal-semiconductor transition of peanut-shaped fullerene (C)
polymers is clarified by considering the electron-phonon coupling in the uneven
structure of the polymers. We established a theory that accounts for the
transition temperature reported in a recent experiment and also suggests
that is considerably lowered by electron doping or prolonged irradiation
during synthesis. The decrease in is an appealing phenomenon with regard
to realizing high-conductivity C-based nanowires even at low
temperatures.Comment: 3 pages, 3 figure
Pressure-induced enhancement of superconductivity and superconducting-superconducting transition in CaC
We measured the electrical resistivity, , of superconducting
CaC at ambient and high pressure up to 16 GPa. For 8 GPa, we found
a large increase of with pressure from 11.5 up to 15.1 K. At 8 GPa,
drops and levels off at 5 K above 10 GPa. Correspondingly, the residual
increases by 200 times and the behavior
becomes flat. The recovery of the pristine behavior after depressurization is
suggestive of a phase transition at 8 GPa between two superconducting phases
with good and bad metallic properties, the latter with a lower and more
static disorder
Orientation Characteristics of Non-regiocontrolled Poly (3-hexyl-thiophene) Film by FTM on Various Liquid Substrates
Orientation characteristics of non-regiocontrolled poly (3-hexylthiophene) (NR-P3HT) films prepared by dynamic casting of floating film and transferring method (FTM) has been investigated. The film was first cast on liquid-substrate to obtain as a floating-film followed by its transfer on solid-substrate such as white-glass or Si-wafer in order to evaluate their optoelectronic characteristics. As a possible key-factor to generate the orientation of conjugated polymer in this method we focused on the components of liquid-substrate in this study. The orientation dependence upon various liquid-substrates reveals that dichroic ratio strongly changes with liquid-substrates. Pictures of floating-film show the change in size of floating-parts depending upon the liquid-substrate, representing the expansion length of casting solution upon the viscosity. These findings have indicated that spreading speed of polymer solution and solvent evaporation speed controls the size of floating-film leading to change in the orientation intensity. The multilayer coatings of oriented NR-P3HT films were used for polarized FTIR analysis exhibiting clear dichroism. The obtained dichroic characteristics were well corresponded with in-plane, out-of-plane and non-oriented vibronic modes of P3HT.India-Japan Expert Group Meeting on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation (IJEGMBE 2015), December 23-26, 2015, Fukuoka, Japa
Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi two-dimensional CeCoIn5
A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the
quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to
the ab-plane. Here, we conduct 115^In NMR studies of this material in a
PERPENDICULAR field, and provide strong evidence for FFLO in this case as well.
Although the topology of the phase transition lines in the H-T phase diagram is
identical for both configurations, there are several remarkable differences
between them. Compared to H//ab, the FFLO region for H perpendicular to the
ab-plane shows a sizable decrease, and the critical field separating the FFLO
and non-FFLO superconducting states almost ceases to have a temperature
dependence. Moreover, directing H perpendicular to the ab-plane results in a
notable change in the quasiparticle excitation spectrum within the planar node
associated with the FFLO transition.Comment: 5 pages, 3 figure
Solvated dissipative electro-elastic network model of hydrated proteins
Elastic netwok models coarse grain proteins into a network of residue beads
connected by springs. We add dissipative dynamics to this mechanical system by
applying overdamped Langevin equations of motion to normal-mode vibrations of
the network. In addition, the network is made heterogeneous and softened at the
protein surface by accounting for hydration of the ionized residues. Solvation
changes the network Hessian in two ways. Diagonal solvation terms soften the
spring constants and off-diagonal dipole-dipole terms correlate displacements
of the ionized residues. The model is used to formulate the response functions
of the electrostatic potential and electric field appearing in theories of
redox reactions and spectroscopy. We also formulate the dielectric response of
the protein and find that solvation of the surface ionized residues leads to a
slow relaxation peak in the dielectric loss spectrum, about two orders of
magnitude slower than the main peak of protein relaxation. Finally, the
solvated network is used to formulate the allosteric response of the protein to
ion binding. The global thermodynamics of ion binding is not strongly affected
by the network solvation, but it dramatically enhances conformational changes
in response to placing a charge at the active site of the protein
Mindwandering propensity modulates episodic memory consolidation
Research into strategies that can combat episodic memory decline in healthy older adults has gained widespread attention over the years. Evidence suggests that a short period of rest immediately after learning can enhance memory consolidation, as compared to engaging in cognitive tasks. However, a recent study in younger adults has shown that post-encoding engagement in a working memory task leads to the same degree of memory consolidation as from post-encoding rest. Here, we tested whether this finding can be extended to older adults. Using a delayed recognition test, we compared the memory consolidation of word–picture pairs learned prior to 9 min of rest or a 2-Back working memory task, and examined its relationship with executive functioning and mindwandering propensity. Our results show that (1) similar to younger adults, memory for the word–picture associations did not differ when encoding was followed by post-encoding rest or 2-Back task and (2) older adults with higher mindwandering propensity retained more word–picture associations encoded prior to rest relative to those encoded prior to the 2-Back task, whereas participants with lower mindwandering propensity had better memory performance for the pairs encoded prior to the 2-Back task. Overall, our results indicate that the degree of episodic memory consolidation during both active and passive post-encoding periods depends on individual mindwandering tendency
- …