125 research outputs found

    Adiposity related brain plasticity induced by bariatric surgery

    Full text link
    Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain’s homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning

    Roux-en-Y gastric bypass surgery progressively alters radiologic measures of hypothalamic inflammation in obese patients

    Get PDF
    There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values

    Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term potentiation (LTP) and long-term depression (LTD) play important roles in mediating activity-dependent changes in synaptic transmission and are believed to be crucial mechanisms underlying learning and cortical plasticity. In human subjects, however, the lack of adequate input stimuli for the induction of LTP and LTD makes it difficult to study directly the impact of such protocols on behavior.</p> <p>Results</p> <p>Using tactile high- and low-frequency stimulation protocols in humans, we explored the potential of such protocols for the induction of perceptual changes. We delivered tactile high-frequency and low-frequency stimuli (t-HFS, t-LFS) to skin sites of approximately 50 mm<sup>2 </sup>on the tip of the index finger. As assessed by 2-point discrimination, we demonstrate that 20 minutes of t-HFS improved tactile discrimination, while t-LFS impaired performance. T-HFS-effects were stable for at least 24 hours whereas t-LFS-induced changes recovered faster. While t-HFS changes were spatially very specific with no changes on the neighboring fingers, impaired tactile performance after t-LFS was also observed on the right middle-finger. A central finding was that for both t-LFS and t-HFS perceptual changes were dependent on the size of the stimulated skin area. No changes were observed when the stimulated area was very small (< 1 mm<sup>2</sup>) indicating special requirements for spatial summation.</p> <p>Conclusion</p> <p>Our results demonstrate differential effects of such protocols in a frequency specific manner that might be related to LTP- and LTD-like changes in human subjects.</p

    Tactile acuity training for patients with chronic low back pain: a pilot randomised controlled trial

    Get PDF
    BACKGROUND: Chronic pain can disrupt the cortical representation of a painful body part. This disruption may play a role in maintaining the individual’s pain. Tactile acuity training has been used to normalise cortical representation and reduce pain in certain pain conditions. However, there is little evidence for the effectiveness of this intervention for chronic low back pain (CLBP). The primary aim of this study was to inform the development of a fully powered randomised controlled trial (RCT) by providing preliminary data on the effect of tactile acuity training on pain and function in individuals with CLBP. The secondary aim was to obtain qualitative feedback about the intervention. METHODS: In this mixed-methods pilot RCT 15 individuals were randomised to either an intervention (tactile acuity training) or a placebo group (sham tactile acuity training). All participants received 3 sessions of acuity training (intervention or sham) from a physiotherapist and were requested to undertake daily acuity home training facilitated by an informal carer (friend/relative). All participants also received usual care physiotherapy. The primary outcome measures were pain (0-100visual analogue scale (VAS)) and function (Roland Morris Disability Questionnaire (RMDQ)). Participants and their informal carers were invited to a focus group to provide feedback on the intervention. RESULTS: The placebo group improved by the greatest magnitude for both outcome measures, but there was no statistically significant difference (Mean difference (95%CI), p-value) between groups for change in pain (25.6 (-0.7 to 51.9), p = 0.056) or function (2.2 (-1.6 to 6.0), p = 0.237). Comparing the number of individuals achieving a minimally clinically significant improvement, the placebo group had better outcomes for pain with all participants achieving ≥30% improvement compared to only a third of the intervention group (6/6 vs. 3/9, p = 0.036). Qualitatively, participants reported that needing an informal carer was a considerable barrier to the home training component of the study. CONCLUSIONS: This pilot RCT found tactile acuity training to be no more effective than sham tactile acuity training for function and less effective for pain in individuals with CLBP. That the intervention could not be self-applied was a considerable barrier to its use. TRIAL REGISTRATION: ISRCTN: ISRCTN9811808

    Indiscriminable sounds determine the direction of visual motion

    Get PDF
    On cross-modal interactions, top-down controls such as attention and explicit identification of cross-modal inputs were assumed to play crucial roles for the optimization. Here we show the establishment of cross-modal associations without such top-down controls. The onsets of two circles producing apparent motion perception were accompanied by indiscriminable sounds consisting of six identical and one unique sound frequencies. After adaptation to the visual apparent motion with the sounds, the sounds acquired a driving effect for illusory visual apparent motion perception. Moreover, the pure tones with each unique frequency of the sounds acquired the same effect after the adaptation, indicating that the difference in the indiscriminable sounds was implicitly coded. We further confrimed that the aftereffect didnot transfer between eyes. These results suggest that the brain establishes new neural representations between sound frequency and visual motion without clear identification of the specific relationship between cross-modal stimuli in early perceptual processing stages

    The politicisation of evaluation: constructing and contesting EU policy performance

    Get PDF
    Although systematic policy evaluation has been conducted for decades and has been growing strongly within the European Union (EU) institutions and in the member states, it remains largely underexplored in political science literatures. Extant work in political science and public policy typically focuses on elements such as agenda setting, policy shaping, decision making, or implementation rather than evaluation. Although individual pieces of research on evaluation in the EU have started to emerge, most often regarding policy “effectiveness” (one criterion among many in evaluation), a more structured approach is currently missing. This special issue aims to address this gap in political science by focusing on four key focal points: evaluation institutions (including rules and cultures), evaluation actors and interests (including competencies, power, roles and tasks), evaluation design (including research methods and theories, and their impact on policy design and legislation), and finally, evaluation purpose and use (including the relationships between discourse and scientific evidence, political attitudes and strategic use). The special issue considers how each of these elements contributes to an evolving governance system in the EU, where evaluation is playing an increasingly important role in decision making

    Human Umbilical Cord Blood Cells Restore Brain Damage Induced Changes in Rat Somatosensory Cortex

    Get PDF
    Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury

    Long-term survival of cancer patients compared to heart failure and stroke: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer, heart failure and stroke are among the most common causes of death worldwide. Investigation of the prognostic impact of each disease is important, especially for a better understanding of competing risks. Aim of this study is to provide an overview of long term survival of cancer, heart failure and stroke patients based on the results of large population- and hospital-based studies.</p> <p>Methods</p> <p>Records for our study were identified by searches of Medline via Pubmed. We focused on observed and relative age- and sex-adjusted 5-year survival rates for cancer in general and for the four most common malignancies in developed countries, i.e. lung, breast, prostate and colorectal cancer, as well as for heart failure and stroke.</p> <p>Results</p> <p>Twenty studies were identified and included for analysis. Five-year observed survival was about 43% for all cancer entities, 40-68% for stroke and 26-52% for heart failure. Five-year age and sex adjusted relative survival was 50-57% for all cancer entities, about 50% for stroke and about 62% for heart failure. In regard to the four most common malignancies in developed countries 5-year relative survival was 12-18% for lung cancer, 73-89% for breast cancer, 50-99% for prostate cancer and about 43-63% for colorectal cancer. Trend analysis revealed a survival improvement over the last decades.</p> <p>Conclusions</p> <p>The results indicate that long term survival and prognosis of cancer is not necessarily worse than that of heart failure and stroke. However, a comparison of the prognostic impact of the different diseases is limited, corroborating the necessity for further systematic investigation of competing risks.</p
    corecore