78 research outputs found

    Instability of a Nielsen-Olesen vortex embedded in the electroweak theory; 2, electroweak vortices and gauge equivalence

    Get PDF
    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)xU(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, instead corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model

    Phase Equilibration and Magnetic Field Generation in U(1) Bubble Collisions

    Get PDF
    We present the results of lattice computations of collisions of two expanding bubbles of true vacuum in the Abelian Higgs model with a first-order phase transition. New time-dependent analytical solutions for the Abelian field strength and the phase of the complex field are derived from initial conditions inferred from linear superposition and are shown to be in excellent agreement with the numerical solutions especially for the case where the initial phase difference between the bubbles is small. With a step-function approximation for the initial phase of the complex field, solutions for the Abelian field strength and other gauge-invariant quantities are obtained in closed form. Possible extensions of the solution to the case of the electroweak phase transition and the generation of primordial magnetic fields are briefly discussed.Comment: LaTeX, 41 pages, 6 figures, submitted to Physical Review

    Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions

    Get PDF
    In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of `extra defects', and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference added. To appear in Phys. Rev.

    Vortex Dynamics in Dissipative Systems

    Full text link
    We derive the exact equation of motion for a vortex in two- and three- dimensional non-relativistic systems governed by the Ginzburg-Landau equation with complex coefficients. The velocity is given in terms of local gradients of the magnitude and phase of the complex field and is exact also for arbitrarily small inter-vortex distances. The results for vortices in a superfluid or a superconductor are recovered.Comment: revtex, 5 pages, 1 encapsulated postscript figure (included), uses aps.sty, epsf.te

    Microwave Background Signals from Tangled Magnetic Fields

    Get PDF
    An inhomogeneous cosmological magnetic field will create Alfven-wave modes that induce a small rotational velocity perturbation on the last scattering surface of the microwave background radiation. The Alfven-wave mode survives Silk damping on much smaller scales than the compressional modes. This, in combination with its rotational nature, ensures that there will be no sharp cut-off in anisotropy on arc-minute scales. We estimate that a magnetic field which redshifts to a present value of 3×1093\times 10^{-9} Gauss produces temperature anisotropies at the 10 micro Kelvin level at and below 10 arc-min scales. A tangled magnetic field, which is large enough to influence the formation of large scale structure is therefore potentially detectable by future observations.Comment: 5 pages, Revtex, no figure

    Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection

    Full text link
    Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (\approx hydrodynamic modes) of the underlying physical system, much more than quasi one- and two-dimensional patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the patten dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for three-dimensional pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a two-dimensional one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given.Comment: 29 pages, 2 figure

    Family physicians' effort to stay in charge of the medical treatment when patients have home care by district nurses. A grounded theory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>District nurses (DNs) provide home care for old persons with a mixture of chronic diseases, symptoms and reduced functional ability. Family physicians (FPs) have been criticised for their lack of involvement in this care. The aim of this study was to obtain increased knowledge concerning the FP's experience of providing medical treatment for patients with home care provided by DNs by developing a theoretical model that elucidates how FPs handle the problems they encounter regarding the individual patients and their conditions.</p> <p>Methods</p> <p>Semi-structured interviews were conducted with 13 Swedish FPs concerning one of their registered patients with home care by a DN, and the treatment of this patient. Grounded theory methodology (GTM) was used in the analyses.</p> <p>Results</p> <p>The core category was the effort to stay in charge of the medical treatment. This involved three types of problems: gaining sufficient insight, making adequate decisions, and maintaining appropriate medical treatment. For three categories of patients, the FPs had problems staying in charge. Patients with reduced functional ability had problems providing information and maintaining treatment. Patients who were "fixed in their ways" did not provide information and did not comply with recommendations, and for patients with complex conditions, making adequate decisions could be problematic. To overcome the problems, four different strategies were used: relying on information from others, supporting close observation and follow-up by others, being constantly ready to change the goal of the treatment, and relying on others to provide treatment.</p> <p>Conclusion</p> <p>The patients in this study differed from most other patients seen at the healthcare centre as the consultation with the patient could not provide the usual foundation for decisions concerning medical treatment. Information from and collaboration with the DN and other home care providers was essential for the FP's effort to stay in charge of the medical treatment. The complexity of the situation made it problematic for the FP to make adequate decisions about the goal of the medical treatment. The goal of the treatment had to be constantly evaluated based on information from the DN and other care providers, and thus this information was absolutely crucial.</p

    Use of the prognostic biomarker suPAR in the emergency department improves risk stratification but has no effect on mortality:a cluster-randomized clinical trial (TRIAGE III)

    Get PDF
    Abstract Background Risk stratification of patients in the emergency department can be strengthened using prognostic biomarkers, but the impact on patient prognosis is unknown. The aim of the TRIAGE III trial was to investigate whether the introduction of the prognostic and nonspecific biomarker: soluble urokinase plasminogen activator receptor (suPAR) for risk stratification in the emergency department reduces mortality in acutely admitted patients. Methods The TRIAGE III trial was a cluster-randomized interventional trial conducted at emergency departments in the Capitol Region of Denmark. Eligible hospitals were required to have an emergency department with an intake of acute medical and surgical patients and no previous access to suPAR measurement. Three emergency departments were randomized; one withdrew shortly after the trial began. The inclusion period was from January through June of 2016 consisting of twelve cluster-periods of 3-weeks alternating between intervention and control and a subsequent follow-up of ten months. Patients were allocated to the intervention if they arrived in interventional periods, where suPAR measurement was routinely analysed at arrival. In the control periods suPAR measurement was not performed. The main outcome was all-cause mortality 10 months after arrival of the last patient in the inclusion period. Secondary outcomes included 30-day mortality. Results The trial enrolled a consecutive cohort of 16,801 acutely admitted patients; all were included in the analyses. The intervention group consisted of 6 cluster periods with 8900 patients and the control group consisted of 6 cluster periods with 7901 patients. After a median follow-up of 362 days, death occurred in 1241 patients (13.9%) in the intervention group and in 1126 patients (14.3%) in the control group. The weighted Cox model found a hazard ratio of 0.97 (95% confidence interval, 0.89 to 1.07; p = 0.57). Analysis of all subgroups and of 30-day all-cause mortality showed similar results. Conclusions The TRIAGE III trial found no effect of introducing the nonspecific and prognostic biomarker suPAR in emergency departments on short- or long-term all-cause mortality among acutely admitted patients. Further research is required to evaluate how prognostic biomarkers can be implemented in routine clinical practice. Trial registration clinicaltrials.gov, NCT02643459. Registered 31 December 2015

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MWBme,T,μ,pM_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong BT2B\gg T^{2} and weakly-strong BT2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference
    corecore