593 research outputs found

    On the Mott glass in the one-dimensional half-filled charge density waves

    Full text link
    We study the effect of impurity pinning on a one-dimensional half-filled electron system, which is expressed in terms of a phase Hamiltonian with the charge degree of freedom. Within the classical treatment, the pinned state is examined numerically. The Mott glass, which has been pointed out by Orignac et al. [Phys. Rev. Lett 83 (1999) 2378], appears in the intermediate region where the impurity potential competes with the commensurate potential. Such a state is verified by calculating the soliton formation energy, the local restoring force around the pinned state and the optical conductivity.Comment: 13 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 72 No.11 (2003

    Role of Phase Variables in Quarter-Filled Spin Density Wave States

    Full text link
    Several kinds of spin density wave (SDW) states with both quarter-filled band and dimerization are reexamined for a one-dimensional system with on-site, nearest-neighbor and next-nearest-neighbor repulsive interactions, which has been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098). Within the mean-field theory, the ground state and the response to the density variation are calculated in terms of phase variables, θ\theta and ϕ\phi, where θ\theta expresses the charge fluctuation of SDW and ϕ\phi describes the relative motion between density wave with up spin and that with down spin respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and 2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW where k_F denotes a Fermi wave vector. The harmonic potential with respect to the variation of θ\theta and/or ϕ\phi disappears for the interactions, which lead to the boundary between the pure 2k_F-SDW state and the corresponding coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3 (2000) 79

    Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors

    Full text link
    We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site interactions. With increasing V or V_2, the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at large V. The effect of dimerization along the chain is also considered.Comment: REVTeX, 11 pages, 9 figure

    Cooper Pair Formation in U(1) Gauge Theory of High Temperature Superconductivity

    Full text link
    We study the two-dimensional spin-charge separated Ginzburg-Landau theory containing U(1) gauge interactions as a semi-phenomenological model describing fluctuating condensates in high temperature superconductivity. Transforming the original GL action, we abstract the effective action of Cooper pair. Especially, we clarify how Cooper pair correlation evolves in the normal state from the point of view of spin-charge separation. Furthermore, we point out how Cooper pair couples to gauge field in a gauge-invariant way, stressing the insensitivity of Cooper pair to infrared gauge field fluctuation.Comment: 4 pages, 5 figures included, submitted to J. Phys. Soc. Jp

    Magnetic response and quantum critical behavior in the doped two-leg extended Hubbard ladder

    Full text link
    We have investigated quantum critical behavior in the doped two-leg extended Hubbard ladder, by using a weak-coupling bosonization method. In the ground state, the dominant fluctuation changes from the conventional d-wave-like superconducting (SCd) state into density-wave states, with increasing nearest-neighbor repulsions and/or decreasing doping rate. The competition between the SCd state and the charge-density-wave state coexisting with the p-density-wave state becomes noticeable on the critical point, at which the gap for magnetic excitations vanishes. Based on the Majorana-fermion description of the effective theory, we calculate the temperature dependence of the magnetic response such as the spin susceptibility and the NMR relaxation rate, which exhibit unusual properties due to two kinds of spin excitation modes. On the quantum critical point, the spin susceptibility shows paramagnetic behavior with logarithmic corrections and the NMR relaxation rate also exhibits anomalous power-law behavior. We discuss the commensurability effect due to the umklapp scattering and relevance to the two-leg ladder compounds Sr_{14-x}Ca_xCu_{24}O_{41}.Comment: 18 pages, 9 figures, accepted for publication in Phys. Rev.

    Role of Collective Mode for Optical Conductivity and Reflectivity in Quarter-Filled Spin-Density-Wave State

    Full text link
    Taking account of a collective mode relevant to charge fluctuation, the optical conductivity of spin-density-wave state has been examined for an extended Hubbard model with one-dimensional quarter-filled band. We find that, within the random phase approximation, the conductivity exhibits several peaks at the frequency corresponding to the excitation energy of the commensurate collective mode. When charge ordering appears with increasing inter-site repulsive interactions, the main peak with the lowest frequency is reduced and the effective mass of the mode is enhanced indicating the suppression of the effect of the collective mode by charge ordering. It is also shown that the reflectivity becomes large in a wide range of frequency due to the huge dielectric constant induced by the collective mode.Comment: 11 pages, 16 figure

    Spectral sum rules for the Tomonaga-Luttinger model

    Full text link
    In connection with recent publications we discuss spectral sum rules for the Tomonaga-Luttinger model without using the explicit result for the one-electron Green's function. They are usefull in the interpretation of recent high resolution photoemission spectra of quasi-one-dimensional conductors. It is shown that the limit of infinite frequency and band cut\-off do not commute. Our result for arbitrary shape of the interaction potential generalizes an earlier discussion by Suzumura. A general analytical expression for the spectral function for wave vectors far from the Fermi wave vector kFk_{F} is presented. Numerical spectra are shown to illustrate the sum rules.Comment: 9 pages, REVTEX 3.0, 2 figures added as postscript file

    Interplay between phase defects and spin polarization in the specific heat of the spin density wave compound (TMTTF)_2Br in a magnetic field

    Full text link
    Equilibrium heat relaxation experiments provide evidence that the ground state of the commensurate spin density wave (SDW) compound (TMTTF)2_2Br after the application of a sufficient magnetic field is different from the conventional ground state. The experiments are interpreted on the basis of the local model of strong pinning as the deconfinement of soliton-antisoliton pairs triggered by the Zeeman coupling to spin degrees of freedom, resulting in a magnetic field induced density wave glass for the spin carrying phase configuration.Comment: 4 pages, 5 figure
    • …
    corecore