10 research outputs found
Quantum dots affect expression of CD133 surface antigen in melanoma cells
Simona Steponkiene1-3, Simona Kavaliauskiene1, Rasa Purviniene4, Ricardas Rotomskis3,5, Petras Juzenas11Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospital, Oslo, Norway; 2Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania; 3Biomedical Physics Laboratory of Oncology Institute, Vilnius University, Vilnius, Lithuania; 4Immunology Laboratory of Oncology Institute, Vilnius University, Vilnius, Lithuania; 5Biophotonics Laboratory, Laser Research Center, Vilnius University, Vilnius, LithuaniaBackground: In novel treatment approaches, therapeutics should be designed to target cancer stem cells (CSCs). Quantum dots (QDs) are a promising new tool in fighting against cancer. However, little is known about accumulation and cytotoxicity of QDs in CSCs.Methods: Accumulation and cytotoxicity of CdTe-MPA (mercaptopropionic acid) QDs in CSCs were assessed using flow cytometry and fluorescence-activated cell sorting techniques as well as a colorimetric cell viability assay.Results: We investigated the expression of two cell surface-associated glycoproteins, CD44 and CD133, in four different cancer cell lines (glioblastoma, melanoma, pancreatic, and prostate adenocarcinoma). Only the melanoma cells were positive to both markers of CD44 and CD133, whereas the other cells were only CD44-positive. The QDs accumulated to a similar extent in all subpopulations of the melanoma cells. The phenotypical response after QD treatment was compared with the response after ionizing radiation treatment. The percentage of the CD44high-CD133high subpopulation decreased from 72% to 55%–58% for both treatments. The stem-like subpopulation CD44highCD133low/- increased from 26%–28% in the untreated melanoma cells to 36%–40% for both treatments.Conclusion: Treatment of melanoma cells with QDs results in an increase of stem-like cell subpopulations. The changes in phenotype distribution of the melanoma cells after the treatment with QDs are comparable with the changes after ionizing radiation.Keywords: prominin-1, CD44, glycoproteins, flow cytometry, FACS, nanoparticle
Complexes of functionalized quantum dots and chlorin e<sub>6</sub> in photodynamic therapy
Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors
Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors. Such characteristics enable MSCs to be used in cellular hitchhiking of nanoparticles. In this study, MSCs extracted from the skin connective tissue were investigated as transporters of semiconductor nanocrystals quantum dots (QDs).Materials and methods: Cytotoxicity of carboxylated CdSe/ZnS QDs was assessed by lactate dehydrogenase cell viability assay. Quantitative uptake of QDs was determined by flow cytometry; their intracellular localization was evaluated by confocal microscopy. In vitro tumor-tropic migration of skin-derived MSCs was verified by Transwell migration assay. For in vivo migration studies of QD-loaded MSCs, human breast tumor-bearing immunodeficient mice were used.Results: QDs were found to be nontoxic to MSCs in concentrations no more than 16 nM. The uptake studies showed a rapid QD endocytosis followed by saturating effects after 6 h of incubation and intracellular localization in the perinuclear region. In vitro migration of MSCs toward MDA-MB-231 breast cancer cells and their conditioned medium was up to nine times greater than the migration toward noncancerous breast epithelial cells MCF-10A. In vivo, systemically administered QD-labeled MSCs were mainly located in the tumor and metastatic tissues, evading most healthy organs with the exception being blood clearance organs (spleen, kidneys, liver).Conclusion: Skin-derived MSCs demonstrate applicability in cell-mediated delivery of nanoparticles. The findings presented in this study promise further development of a cell therapy and nanotechnology-based tool for early cancer diagnostics and therapy. Keywords: mesenchymal stem cells, tumor tropism, quantum dots, nanoparticles, tumor-specific delivery, immunodeficient mic
A non-covalent complex of quantum dots and chlorin e<sub>6</sub>: efficient energy transfer and remarkable stability in living cells revealed by FLIM
Non-covalent complex of lipid-coated CdSe/ZnS quantum dots and second-generation photosensitizer, chlorin e6 can enter living HeLa cells with maintained integrity that ensures efficient FRET.</p
