14 research outputs found

    A one-year exercise intervention program in pre-pubertal girls does not influence hip structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that a one-year school-based exercise intervention program influences the accrual of bone mineral in pre-pubertal girls. This report aims to evaluate if also hip structure is affected, as geometry independent of bone mineral influences fracture risk.</p> <p>Methods</p> <p>Fifty-three girls aged 7 – 9 years were included in a curriculum-based exercise intervention program comprising 40 minutes of general physical activity per school day (200 minutes/week). Fifty healthy age-matched girls who participated in the general Swedish physical education curriculum (60 minutes/week) served as controls. The hip was scanned by dual X-ray absorptiometry (DXA) and the hip structural analysis (HSA) software was applied to evaluate bone mineral content (BMC), areal bone mineral density (aBMD), periosteal and endosteal diameter, cortical thickness, cross-sectional moment of inertia (CSMI), section modulus (Z) and cross-sectional area (CSA) of the femoral neck (FN). Annual changes were compared. Group comparisons were done by independent student's <it>t</it>-test between means and analyses of covariance (ANCOVA). Pearson's correlation test was used to evaluate associations between activity level and annual changes in FN. All children remained at Tanner stage 1 throughout the study.</p> <p>Results</p> <p>No between-group differences were found during the 12 months study period for changes in the FN variables. The total duration of exercise during the year was not correlated with the changes in the FN traits.</p> <p>Conclusion</p> <p>Evaluated by the DXA technique and the HSA software, a general one-year school-based exercise program for 7–9-year-old pre-pubertal girls seems not to influence the structure of the hip.</p

    The mode of school transportation in pre-pubertal children does not influence the accrual of bone mineral or the gain in bone size - two year prospective data from the paediatric osteoporosis preventive (POP) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Walking and cycling to school are one source of regular physical activity. The aim of this two years observational study in pre-pubertal children was to evaluate if walking and cycling to school was associated with higher total amount of physical activity and larger gain in bone mineral content (BMC) and bone width than when going by car or bus.</p> <p>Methods</p> <p>133 boys and 99 girls aged 7-9 years were recruited to the Malmö Prospective Paediatric Osteoporosis Prevention (POP) study. BMC (g) was measured by dual X-ray absorptiometry (DXA) in total body, lumbar spine (L2-L4) and femoral neck (FN) at baseline and after 24 months. Bone width was measured in L2-L4 and FN. Skeletal changes in the 57 boys and 48 girls who consistently walked or cycled to school were compared with the 24 boys and 17 girls who consistently went by bus or car. All children remained in Tanner stage I. Level of everyday physical activity was estimated by accelerometers worn for four consecutive days and questionnaires. Comparisons were made by independent student's t-tests between means and Fisher's exact tests. Analysis of covariance (ANCOVA) was used to adjust for group differences in age at baseline, duration of organized physical activity, annual changes in length and BMC or bone width if there were differences in these traits at baseline.</p> <p>Results</p> <p>After the adjustments, there were no differences in the annual changes in BMC or bone width when comparing girls or boys who walked or cycled to school with those who went by car or bus. Furthermore, there were no differences in the levels of everyday physical activity objectively measured by accelerometers and all children reached above the by the United Kingdom Expert Consensus Group recommended level of 60 minutes moderate to vigorous physical activity per day.</p> <p>Conclusion</p> <p>A physical active transportation to school for two years is in pre-pubertal children not associated with a higher accrual of BMC or bone width than a passive mode of transportation, possibly due to the fact that the everyday physical activity in these pre-pubertal children, independent of the mode of school transportation, was high.</p

    Bone mineral accrual and gain in skeletal width in pre-pubertal school children is independent of the mode of school transportation – one-year data from the prospective observational pediatric osteoporosis prevention (POP) study

    Get PDF
    Background: Walking and cycling to school could be an important regular source of physical activity in growing children. The aim of this 12 months prospective observational study was thus to evaluate the effect of self-transportation to school on bone mineral accrual and gain in bone width in pre-pubertal children, both traits independently contributing to bone strength. Methods: Ninety-seven girls and 133 boys aged 7-9 years were recruited as a part of the Malmo Pediatric Osteoporosis Prevention (POP) Study in order to evaluate the influence of self-selected school transportation for the accrual of bone mineral and bone width. Children who walked or cycled to school were compared with children who went by bus or car. Bone mineral content (BMC) was measured by dual energy X-ray absorptiometry (DXA) in the lumbar spine (L2-L4), third lumbar vertebra (L3) and hip, and bone width was calculated at L3 and femoral neck (FN). Changes during the first 12 months were compared between the groups. Subjective duration of physical activity was estimated by a questionnaire and objective level of everyday physical activity at follow-up by accelerometers worn for four consecutive days. All children remained in Tanner stage 1 throughout the study. Comparisons were made by independent student's t-tests between means, ANCOVA and Fisher's exact tests. Results: There were no differences in baseline or annual changes in BMC or bone width when the transportation groups were compared. No differences were detected in objectively measured daily level of physical activity by accelerometer. All children reached above 60 minutes of moderate to intense daily physical activity per day, the international recommended level of daily physical activity according to the United Kingdom Expert Consensus Group. Conclusion: The everyday physical activity in these pre-pubertal children seems to be so high that the school transportation contributes little to their total level of physical activity. As a result, the choice of school transportation seems not to influence the accrual of bone mineral or gain in bone size during a I2-month follow-up period

    The increase in physical performance and gain in lean and fat mass occur in prepubertal children independent of mode of school transportation. One year data from the prospective controlled Pediatric Osteoporosis Prevention (POP) study

    Get PDF
    Background: The aim of this 12-month study in pre-pubertal children was to evaluate the effect of school transportation on gain in lean and fat mass, muscle strength and physical performance. Methods: Ninety-seven girls and 133 boys aged 7-9 years from the Malmö Pediatric Osteoporosis Prevention Study were included. Regional lean and fat mass were assessed by dual energy X-ray absorptiometry, isokinetic peak torque of knee extensors and flexors by a computerised dynamometer and physical performance by vertical jump height. Level of physical activity was assessed by accelerometers. The 12-month changes in children who walked or cycled to school were compared with changes in those who travelled by bus or car. Results: There were no differences in baseline or annual changes in lean or fat mass gain, muscle strength or physical performance between the two groups. All children reached the internationally recommended level of 60 minutes per day of moderate or high physical activity by accelerometers. Conclusion: The choice of school transportation in pre-pubertal children seems not to influence the gain in lean and fat mass, muscle strength or functional ability, probably as the everyday physical activity is so high that the mode of school transportation contributes little to the total level of activity

    Low physical activity is related to clustering of risk factors for fracture—a 2-year prospective study in children

    No full text
    Summary: The study investigates the effect of physical activity (PA) on a composite score for fracture risk in pre-pubertal children. Low PA in children is related to the composite score for fracture risk and the pre-pubertal years seem to be a period when PA positively affects the score. Introduction: This study evaluates if PA in children is related to clustering of risk factors for fracture. Research questions are the following: (i) What is the effect of physical activity (PA) on single traits and a composite score for fracture risk? (ii) Could this score be used to identify the level of PA needed to reach beneficial effects? Methods: This prospective population-based study included 269 children, aged 7–9 years at baseline while 246 attended the 2-year follow-up. We estimated duration of PA by questionnaires and measured traits that independently predict fractures. We then calculated gender specific Z-scores for each variable. The mean Z-score of all traits was used as a composite score for fracture risk. We tested correlation between duration of PA, each trait, and the composite score and group differences between children in different quartiles of PA. Results: At baseline, we found no correlation between duration of PA and any of the traits or the composite score. At follow-up, we found a correlation between PA and the composite score. Physical activity had an effect on composite score, and children in the lowest quartiles of PA had unbeneficial composite score compared to children in the other quartiles. Conclusion: Low PA in children is related to clustering of risk factors for fracture, and the pre-pubertal years seem to be a period when PA positively affects the composite score

    Effects of a daily school based physical activity intervention program on muscle development in prepubertal girls

    Full text link
    This 12-month prospective controlled intervention evaluated the effect of a general school based physical activity program on muscle strength, physical performance and body composition in prepubertal girls. Fifty-three girls aged 7&ndash;9 years involved in a school based exercise program [40 min/day of general physical activity per school day (200 min/week)] were compared with 50 age-matched girls who participated in the general Swedish physical education curriculum (mean 60 min/week). Body composition (DXA), isokinetic peak torque (PT) of the knee extensors and flexors at 60 and 180&deg;/s, and vertical jump height (VJH) were assessed at baseline and 12 months. The annual gain in weight was similar between the groups, but there was a greater increase in total body and regional lean mass (P &lt; 0.05) and fat mass (P &lt; 0.01) in the exercise group. Mean gains in knee extensor PT at 60 and 180&deg;/s were 7.0&ndash;7.6% greater in the exercise group (P ranging &lt;0.05&ndash;&lt;0.001). No significant differences were detected in VJH. In conclusion, increasing school based physical education to at least 3 h/week provides a feasible strategy to enhance the development of muscle strength and lean mass in prepubertal girls.<br /
    corecore