4 research outputs found

    Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study

    Get PDF
    In this study, the effects of UVA and UVB rays on antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) were examined in the corneal epithelium. The corneas of albino rabbits were irradiated with a UV lamp generating UVA (365 nm wavelength) or UVB rays (312 nm wavelength), 1 X daily for 5 min, from a distance of 0.03 m, over 4 days (shorter procedure) or 8 days (longer procedure). In contrast to UVA rays, which did not evoke significant disturbances, UVB rays changed the activities of antioxidant enzymes. The longer repeated irradiation with UVB rays was performed, the deeper the observed decrease in antioxidant enzymes. The shorter procedure evoked a more profound decrease of glutathione peroxidase and catalase (the enzymes cleaving hydrogen peroxide) than of superoxide dismutase, an enzyme scavenging superoxide radical and producing hydrogen peroxide during the dismutation reaction of a superoxide free radical. This may contribute to an insufficient hydrogen peroxide cleavage at the corneal surface and danger to the cornea from oxidative damage. After the longer procedure (UVB rays), the activities of all antioxidant enzymes were very low or completely absent. In conclusion, repeated irradiation of the cornea with UVB rays evokes a deficiency in antioxidant enzymes in the corneal epithelium, which very probably contributes to the damage of the cornea (and possibly also deeper parts of the eye) from UVB rays and the reactive oxygen products generated by them

    Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays

    No full text
    The comeas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with nonpathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)- generating oxidases (xanthine oxidase, D-amino acid oxidase and a-hydroxy acid oxidase) were exarnined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped comeal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and ahydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in al1 comeal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidaselxanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the comeal damage evoked by UVB rays

    Kynurenines in the mammalian brain: when physiology meets pathology

    No full text
    corecore