17 research outputs found
Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment
YesFor the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the
employment of usual strategy of simulating such scouring event using the 3D numerical model is
very time consuming and less practical. In order to develop an applicable model to consider
temporally long abutment scouring process, this study modifies the common approach of 2D
shallow water equations (SWEs) model to account for the sediment transport and turbulence, and
provides a realistic approach to simulate the long scouring process to reach the full scour
equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate
the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was
also used to improve the simulation of the numerical source terms. The abutment scour
experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang
Technological University, Singapore to compare with the presented 2D SGUM-SWEs model.
Fifteen experiments were conducted over a total period of 3059.7 hours experimental time (over
4.2 months). The comparison shows that the 2D SGUM-SWEs model gives good representation
to the experimental results with the practical advantage
Fluorescent clays-Similar transfer with sensitive detection
The significant probe dilution is one of the reasons to use soluble dyes and concentrated ion solutions for studies of colloid transport in subsoils and aquifers. We studied the clay transport in sand columns with Rhodamine 6G-intercalated montmorillonite (MMT). Our MMT-R exhibited transfer properties similar to the non-dyed clays but was detectable starting from 1 ppb by fluorescence and only from 0.5 ppm by turbidity. More contaminated soil adsorbed the MMT-R better than the pure one and therefore the reduction of influent turbidity may have the unintended effect of decreasing soil adsorption capacit
Conversion of Hydroperoxoantimonate Coated Graphenes to Sb 2
We describe a method for conformal coating of reduced graphene oxide (rGO) by stibnite nanocrystallites. First, graphene oxide (GO) supported amorphous hydroperoxoantimonate was produced using the recently introduced hydrogen peroxide synthesis route. Sulfurization of the amorphous antimonate yielded supported antimony(V) oxide nanoparticles and sulfur, which were then converted by high temperature vacuum treatment to 15–20 nm rGO supported stibnite. The usefulness of the new material and synthesis approach are demonstrated by highly efficient and stable lithium battery anodes. Since both sulfur lithiation and antimony–lithium alloying are reversible, they both contribute to the charge capacity, which exceeded 720 mA h g–1 after 50 cycles at a current density of 250 mA g–1. The very small crystallite size of the stibnite provides a minimum diffusion pathway and allows for excellent capacity retention at a high rate (>480 mA h g–1 at 2000 mA g–1 was observed). The nanoscale dimensions of the crystallites minimize lithiation-induced deformations and the associated capacity fading upon repeated charge–discharge cycles. The flexibility and conductivity of the rGO ensure minimal ohmic drop and prevent crack formation upon repeated cycles