108 research outputs found

    Viabilitas Dan Keriap Bacillus SP. Bk17 Dan Enterobacter SP. Bk15 Pada Sumber Karbon Dan Nitrogen Yang Berbeda

    Full text link
    To propagate bacterial cell for biocontrol purpose, suitable nutrient have to be determined in which carbon and nitrogen source was often as limited factor of bacterial growth. Proper storage for biocontrol agent such as bacterial cell should also be considered in order to keep the cell viable when used. The aim of this study is to find out suitable carbon and nitrogen sources for viability and swarming of chitinolitic bacterial Bacillus sp. BK17 and Enterobacter sp. BK15. The highest population of bacterial growth (3.7x108 cfu/ml) was found in molases-sodium nitrate (MS) medium and the lowest population was found in crab shell-sodium nitrate (CS) growth (2.4x108 cfu/ml) after 25 days of incubation. The swarming activity of the isolates were varied to some extent with the highest was 51 mm in 2% agar molases-urea after 5 days of incubation. Molases-sodium nitrate (MS) medium is suitable carbon and nitrogen source for the viability of Bacillus sp. and Enterobacter sp. Meanwhile, agar molases-urea medium with 2% agar is suitable medium for swarming ability for both bacteria

    Genomic and genetic insights into a cosmopolitan fungus, Paecilomyces variotii (Eurotiales)

    Get PDF
    Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.Peer reviewe

    Molecular Separation by Using Active and Passive Microfluidic chip Designs: A Comprehensive Review

    Get PDF
    Separation and identification of molecules and biomolecules such as nucleic acids, proteins, and polysaccharides from complex fluids are known to be important due to unmet needs in various applications. Generally, many different separation techniques, including chromatography, electrophoresis, and magnetophoresis, have been developed to identify the target molecules precisely. However, these techniques are expensive and time consuming. “Lab-on-a-chip” systems with low cost per device, quick analysis capabilities, and minimal sample consumption seem to be ideal candidates for separating particles, cells, blood samples, and molecules. From this perspective, different microfluidic-based techniques have been extensively developed in the past two decades to separate samples with different origins. In this review, “lab-on-a-chip” methods by passive, active, and hybrid approaches for the separation of biomolecules developed in the past decade are comprehensively discussed. Due to the wide variety in the field, it will be impossible to cover every facet of the subject. Therefore, this review paper covers passive and active methods generally used for biomolecule separation. Then, an investigation of the combined sophisticated methods is highlighted. The spotlight also will be shined on the elegance of separation successes in recent years, and the remainder of the article explores how these permit the development of novel techniques

    TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TMPRSS2-ERG </it>gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although <it>TMPRSS2-ERG </it>fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear.</p> <p>Methods</p> <p>We studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays.</p> <p>Results</p> <p>Comparison of gene expression levels among <it>TMPRSS2-ERG </it>fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like <it>CRISP3 </it>were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in <it>TMPRSS2-ERG </it>fusion-positive tumors.</p> <p>Conclusions</p> <p>The <it>TMPRSS2-ERG </it>gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy.</p

    Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer

    Full text link
    Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA

    RNAi for Treating Hepatitis B Viral Infection

    Get PDF
    Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection
    corecore