528 research outputs found

    Optimal Active Social Network De-anonymization Using Information Thresholds

    Full text link
    In this paper, de-anonymizing internet users by actively querying their group memberships in social networks is considered. In this problem, an anonymous victim visits the attacker's website, and the attacker uses the victim's browser history to query her social media activity for the purpose of de-anonymization using the minimum number of queries. A stochastic model of the problem is considered where the attacker has partial prior knowledge of the group membership graph and receives noisy responses to its real-time queries. The victim's identity is assumed to be chosen randomly based on a given distribution which models the users' risk of visiting the malicious website. A de-anonymization algorithm is proposed which operates based on information thresholds and its performance both in the finite and asymptotically large social network regimes is analyzed. Furthermore, a converse result is provided which proves the optimality of the proposed attack strategy

    Seeded Graph Matching: Efficient Algorithms and Theoretical Guarantees

    Full text link
    In this paper, a new information theoretic framework for graph matching is introduced. Using this framework, the graph isomorphism and seeded graph matching problems are studied. The maximum degree algorithm for graph isomorphism is analyzed and sufficient conditions for successful matching are rederived using type analysis. Furthermore, a new seeded matching algorithm with polynomial time complexity is introduced. The algorithm uses `typicality matching' and techniques from point-to-point communications for reliable matching. Assuming an Erdos-Renyi model on the correlated graph pair, it is shown that successful matching is guaranteed when the number of seeds grows logarithmically with the number of vertices in the graphs. The logarithmic coefficient is shown to be inversely proportional to the mutual information between the edge variables in the two graphs

    A New Achievable Rate Region for Multiple-Access Channel with States

    Full text link
    The problem of reliable communication over the multiple-access channel (MAC) with states is investigated. We propose a new coding scheme for this problem which uses quasi-group codes (QGC). We derive a new computable single-letter characterization of the achievable rate region. As an example, we investigate the problem of doubly-dirty MAC with modulo-44 addition. It is shown that the sum-rate R1+R2=1R_1+R_2=1 bits per channel use is achievable using the new scheme. Whereas, the natural extension of the Gel'fand-Pinsker scheme, sum-rates greater than 0.320.32 are not achievable.Comment: 13 pages, ISIT 201
    • …
    corecore