5,843 research outputs found
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities
Algorithmic complexity vulnerabilities occur when the worst-case time/space
complexity of an application is significantly higher than the respective
average case for particular user-controlled inputs. When such conditions are
met, an attacker can launch Denial-of-Service attacks against a vulnerable
application by providing inputs that trigger the worst-case behavior. Such
attacks have been known to have serious effects on production systems, take
down entire websites, or lead to bypasses of Web Application Firewalls.
Unfortunately, existing detection mechanisms for algorithmic complexity
vulnerabilities are domain-specific and often require significant manual
effort. In this paper, we design, implement, and evaluate SlowFuzz, a
domain-independent framework for automatically finding algorithmic complexity
vulnerabilities. SlowFuzz automatically finds inputs that trigger worst-case
algorithmic behavior in the tested binary. SlowFuzz uses resource-usage-guided
evolutionary search techniques to automatically find inputs that maximize
computational resource utilization for a given application.Comment: ACM CCS '17, October 30-November 3, 2017, Dallas, TX, US
Phase oscillations in superfluid 3He-B weak links
Oscillations in quantum phase about a mean value of , observed across
micropores connecting two \helium baths, are explained in a Ginzburg-Landau
phenomenology. The dynamics arises from the Josephson phase relation,the
interbath continuity equation, and helium boundary conditions. The pores are
shown to act as Josephson tunnel junctions, and the dynamic variables are the
inter bath phase difference and fractional difference in superfluid density at
micropores. The system maps onto a non-rigid, momentum-shortened pendulum, with
inverted-orientation oscillations about a vertical tilt angle , and
other modes are predicted
Indications of superconductivity in doped highly oriented pyrolytic graphite
We have observed possible superconductivity using standard resistance vs.
temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic
Graphite. The onset appears to be above 100 K and quenching by an applied
magnetic field has been observed. The four initial boron implanted samples
showed no signs of becoming superconductive whereas all four initial and eight
subsequent samples that were implanted with phosphorous showed at least some
sign of the existence of small amounts of the possibly superconducting phases.
The observed onset temperature is dependent on both the number of electron
donors present and the amount of damage done to the graphene sub-layers in the
Highly Oriented Pyrolytic Graphite samples. As a result the data appears to
suggest that the potential for far higher onset temperatures in un-damaged
doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section
was correcte
A New Correlation Between GRB X-Ray Flares And The Prompt Emission
From a sample of GRBs detected by the and missions, we have
extracted the minimum variability time scales for temporal structures in the
light curves associated with the prompt emission and X-ray flares. A comparison
of this variability time scale with pulse parameters such as rise
times,determined via pulse-fitting procedures, and spectral lags, extracted via
the cross-correlation function (CCF), indicate a tight correlation between
these temporal features for both the X-ray flares and the prompt emission.
These correlations suggests a common origin for the production of X-ray flares
and the prompt emission in GRBs.Comment: 5 pages, 3 figures, Accepted for publication in ApJ
Two dynamic exponents in the resistive transition of fully frustrated Josephson-junction arrays
We study the resistive transition in Josephson-junction arrays at
flux quantum per plaquette by dynamical simulations of the
resistively-shunted-junction model. The current-voltage scaling and critical
dynamics of the phases are found to be well described by the same critical
temperature and static exponents as for the chiral (vortex-lattice) transition.
Although this behavior is consistent with a single transition scenario, where
phase and chiral variables order simultaneously, two different dynamic
exponents result for phase coherence and chiral order.Comment: 4 pages, 3 figures, to appear in Europhysics Letter
Sensory organ like response determines the magnetism of zigzag-edged honeycomb nanoribbons
We present an analytical theory for the magnetic phase diagram for zigzag
edge terminated honeycomb nanoribbons described by a Hubbard model with an
interaction parameter U . We show that the edge magnetic moment varies as ln U
and uncover its dependence on the width W of the ribbon. The physics of this
owes its origin to the sensory organ like response of the nanoribbons,
demonstrating that considerations beyond the usual Stoner-Landau theory are
necessary to understand the magnetism of these systems. A first order magnetic
transition from an anti-parallel orientation of the moments on opposite edges
to a parallel orientation occurs upon doping with holes or electrons. The
critical doping for this transition is shown to depend inversely on the width
of the ribbon. Using variational Monte-Carlo calculations, we show that
magnetism is robust to fluctuations. Additionally, we show that the magnetic
phase diagram is generic to zigzag edge terminated nanostructures such as
nanodots. Furthermore, we perform first principles modeling to show how such
magnetic transitions can be realized in substituted graphene nanoribbons.Comment: 5 pages, 5 figure
- …
