8 research outputs found

    Susceptibility of clinical isolates of Burkholderia pseudomallei to a lipid A biosynthesis inhibitor.

    No full text
    Burkholderia pseudomallei is the causative agent of melioidosis, a serious infection associated with high mortality and relapse. Current antimicrobial therapy using ceftazidime (CAZ) is often ineffective. Inhibitors of LpxC, the enzyme responsible for lipid A biosynthesis, have potential antimicrobial activity against several Gram-negative bacteria in vivo, but their activity against B. pseudomallei is unclear. Herein, we investigated the susceptibility of B. pseudomallei clinical isolates to LpxC-4, an LpxC inhibitor, and LpxC-4 in combination with CAZ. Time-kill assays for bactericidal activity were conducted for B. pseudomallei K96243, revealing growth inhibition and bactericidal effect at LpxC-4 concentrations of 2 μg/mL and 4 μg/mL, respectively. No significant synergistic effect was observed with the combination of LpxC-4 and CAZ. LpxC-4 susceptibility was tested on three groups of clinical isolates:1) CAZ- and trimethoprim-sulfamethoxazole (SXT)-susceptible (N = 71), 2) CAZ-resistant (N = 14), and 3) SXT-resistant (N = 23) isolates, by broth microdilution. The minimum concentration of LpxC-4 required to inhibit the growth of 90% of organisms was 2 μg/mL for all isolates. The median minimum inhibitory concentration of both the CAZ/SXT-susceptible and CAZ-resistant groups was 1 μg/mL (interquartile range [IQR] = 1-2 μg/mL), compared with 2 μg/mL (IQR = 2-4 μg/mL) for the SXT-resistant group. Cell morphology was observed after drug exposure by immunofluorescent staining, and a change from rod-shaped to cell wall-defective spherical cells was observed in surviving bacteria. LpxC-4 is a potent bactericidal agent against B. pseudomallei and warrants further testing as a new antibiotic to treat melioidosis

    Susceptibility of clinical isolates of Burkholderia pseudomallei to a lipid A biosynthesis inhibitor.

    No full text
    Burkholderia pseudomallei is the causative agent of melioidosis, a serious infection associated with high mortality and relapse. Current antimicrobial therapy using ceftazidime (CAZ) is often ineffective. Inhibitors of LpxC, the enzyme responsible for lipid A biosynthesis, have potential antimicrobial activity against several Gram-negative bacteria in vivo, but their activity against B. pseudomallei is unclear. Herein, we investigated the susceptibility of B. pseudomallei clinical isolates to LpxC-4, an LpxC inhibitor, and LpxC-4 in combination with CAZ. Time-kill assays for bactericidal activity were conducted for B. pseudomallei K96243, revealing growth inhibition and bactericidal effect at LpxC-4 concentrations of 2 μg/mL and 4 μg/mL, respectively. No significant synergistic effect was observed with the combination of LpxC-4 and CAZ. LpxC-4 susceptibility was tested on three groups of clinical isolates:1) CAZ- and trimethoprim-sulfamethoxazole (SXT)-susceptible (N = 71), 2) CAZ-resistant (N = 14), and 3) SXT-resistant (N = 23) isolates, by broth microdilution. The minimum concentration of LpxC-4 required to inhibit the growth of 90% of organisms was 2 μg/mL for all isolates. The median minimum inhibitory concentration of both the CAZ/SXT-susceptible and CAZ-resistant groups was 1 μg/mL (interquartile range [IQR] = 1-2 μg/mL), compared with 2 μg/mL (IQR = 2-4 μg/mL) for the SXT-resistant group. Cell morphology was observed after drug exposure by immunofluorescent staining, and a change from rod-shaped to cell wall-defective spherical cells was observed in surviving bacteria. LpxC-4 is a potent bactericidal agent against B. pseudomallei and warrants further testing as a new antibiotic to treat melioidosis

    Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation

    No full text
    Burkholderia pseudomallei is an environmental bacterium that causes melioidosis, a major community-acquired infection in tropical regions. Melioidosis presents with a range of clinical symptoms, is often characterized by a robust inflammatory response, may relapse after treatment, and results in high mortality rates. Lipopolysaccharide (LPS) of B. pseudomallei is a potent immunostimulatory molecule comprised of lipid A, core, and O-polysaccharide (OPS) components. Four B. pseudomallei LPS types have been described based on SDS-PAGE patterns that represent the difference of OPS-type A, type B, type B2 and rough LPS. The majority of B. pseudomallei isolates are type A. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) followed by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS) and gas chromatography to characterize the lipid A of B. pseudomallei within LPS type A isolates. We determined that B. pseudomallei lipid A is represented by penta- and tetra-acylated species modified with 4-amino-4-deoxy-arabinose (Ara4N). The MALDI-TOF profiles from 171 clinical B. pseudomallei isolates, including 68 paired primary and relapse isolates and 35 within-host isolates were similar. We did not observe lipid A structural changes when the bacteria were cultured in different growth conditions. Dose-dependent NF-κB activation in HEK cells expressing TLR4 was observed using multiple heat-killed B. pseudomallei isolates and corresponding purified LPS. We demonstrated that TLR4-dependent NF-κB activation induced by heat-killed bacteria or LPS prepared from OPS deficient mutant was significantly greater than those induced by wild type B. pseudomallei. These findings suggest that the structure of B. pseudomallei lipid A is highly conserved in a wide variety of clinical and environmental circumstances but that the presence of OPS may modulate LPS-driven innate immune responses in melioidosis

    Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation

    No full text
    Burkholderia pseudomallei is an environmental bacterium that causes melioidosis, a major community-acquired infection in tropical regions. Melioidosis presents with a range of clinical symptoms, is often characterized by a robust inflammatory response, may relapse after treatment, and results in high mortality rates. Lipopolysaccharide (LPS) of B. pseudomallei is a potent immunostimulatory molecule comprised of lipid A, core, and O-polysaccharide (OPS) components. Four B. pseudomallei LPS types have been described based on SDS-PAGE patterns that represent the difference of OPS-type A, type B, type B2 and rough LPS. The majority of B. pseudomallei isolates are type A. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) followed by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS) and gas chromatography to characterize the lipid A of B. pseudomallei within LPS type A isolates. We determined that B. pseudomallei lipid A is represented by penta- and tetra-acylated species modified with 4-amino-4-deoxy-arabinose (Ara4N). The MALDI-TOF profiles from 171 clinical B. pseudomallei isolates, including 68 paired primary and relapse isolates and 35 within-host isolates were similar. We did not observe lipid A structural changes when the bacteria were cultured in different growth conditions. Dose-dependent NF-κB activation in HEK cells expressing TLR4 was observed using multiple heat-killed B. pseudomallei isolates and corresponding purified LPS. We demonstrated that TLR4-dependent NF-κB activation induced by heat-killed bacteria or LPS prepared from OPS deficient mutant was significantly greater than those induced by wild type B. pseudomallei. These findings suggest that the structure of B. pseudomallei lipid A is highly conserved in a wide variety of clinical and environmental circumstances but that the presence of OPS may modulate LPS-driven innate immune responses in melioidosis
    corecore