1,648 research outputs found

    Tax Compliance and Public Goods Provision -- An Agent-based Econophysics Approach

    Full text link
    We calculate the dynamics of tax evasion within a multi-agent econophysics model which is adopted from the theory of magnetism and previously has been shown to capture the main characteristics from agent-based based models which build on the standard Allingham and Sandmo approach. In particular, we implement a feedback of public goods provision on the decision-making of selfish agents which aim to pursue their self interest. Our results imply that such a feedback enhances the moral attitude of selfish agents thus reducing the percentage of tax evasion. Two parameters govern the behavior of selfish agents, (i) the rate of adaption to changes in public goods provision and (ii) the threshold of perception of public goods provision. Furtheron we analyze the tax evasion dynamics for different agent co mpositions and under the feedback of public goods provision. We conclude that policymakers may enhance tax compliance behavior via the threshold of perception by means of targeted public relations.Comment: 28 pages, 3 figures, accepted for publication in the Central European Journal of Economic Modelling and Econometric

    Gutzwiller Charge Phase Diagram of Cuprates, including Electron-Phonon Coupling Effects

    Full text link
    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T_c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(pi,pi) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave (CDW) order in YBa_2Cu_3O_{7-delta} including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.Comment: This is a revised version of arXiv:1207.5715. 25 pages, 5 figures, plus Supplement [7 pages, 7 figures], available as a pdf [click on other, then Download Source, & extract pdf file from zip] Manuscript is under consideration at the NJ

    Phase separation and long wave-length charge instabilities in spin-orbit coupled systems

    Full text link
    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n)g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wave length charge density wave (CDW) where the associated second order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kFk_F. At higher density the instability criterion becomes independent of kFk_F and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3_3/SrTiO3_3 or LaTiO3_3/SrTiO3_3 interfaces.Comment: 6 pages, 6 figure

    Spectroscopic evidences of quantum critical charge fluctuations in cuprates

    Full text link
    We calculate the optical conductivity in a clean system of quasiparticles coupled to charge-ordering collective modes. The absorption induced by these modes may produce an anomalous frequency and temperature dependence of low-energy optical absorption in some cuprates. However, the coupling with lattice degrees of freedom introduces a non-universal energy scale leading to scaling violation in low-temperature optical conductivity.Comment: Proceedings of M2S 2006. To appear in Physica

    Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces

    Get PDF
    There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of electron density is accompanied by an inhomogeneous distribution of the (self-consistent) electric field confining the electrons at the interface. In turn this inhomogeneous transverse electric field induces an inhomogeneous Rashba spin-orbit coupling (RSOC). After an introductory summary on two mechanisms possibly giving rise to an electronic phase separation accounting for the above inhomogeneity,we introduce a phenomenological model to describe the density-dependent RSOC and its consequences. Besides being itself a possible source of inhomogeneity or charge-density waves, the density-dependent RSOC gives rise to interesting physical effects like the occurrence of inhomogeneous spin-current distributions and inhomogeneous quantum-Hall states with chiral "edge" states taking place in the bulk of the 2DEG. The inhomogeneous RSOC can also be exploited for spintronic devices since it can be used to produce a disorder-robust spin Hall effect.Comment: 13 pages, 15 figure

    Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates

    Full text link
    Empirical evidence in heavy fermion, pnictide, and other systems suggests that unconventional superconductivity appears associated to some form of real-space electronic order. For the cuprates, despite several proposals, the emergence of order in the phase diagram between the commensurate antiferromagnetic state and the superconducting state is not well understood. Here we show that in this regime doped holes assemble in "electronic polymers." Within a Monte Carlo study we find, that in clean systems by lowering the temperature the polymer melt condenses first in a smectic state and then in a Wigner crystal both with the addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order and with the persistence of a thermodynamic transition. Such electronic phases, whose properties are reminiscent of soft-matter physics, produce charge and spin responses in good accord with experiments.Comment: 10 pages, 4 figures plus supplementary informatio

    Theory of the spin galvanic effect at oxide interfaces

    Full text link
    The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3_3 and SrTiO3_3. Here we analyze the SGE for oxide interfaces within a three-band model for the Ti t2g_{2g} orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to provide an appropriate description of the experimental data.Comment: 5 pages, 3 figure

    Dynamical charge density waves rule the phase diagram of cuprates

    Full text link
    In the last few years charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raise several fundamental issues that challenge the various theoretical proposals. Here, we account for the complex experimental temperature vs. doping phase diagram and we provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. We also account for the pseudogap and its onset temperature T*(p) on the basis of dynamically fluctuating CDWs. The nearly singular anisotropic scattering mediated by these fluctuations also account for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP.Comment: 13 pages, 7 figure

    Possible mechanisms of electronic phase separation in oxide interfaces

    Full text link
    LaAlO3/SrTiO3 ad LaTiO3/SrTiO3 interfaces are known to host a strongly inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work we present three unconventional electronic mechanisms of electronic phase separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide interfaces. Common to all three mechanisms is the dependence of some (interaction) potential on the 2DEG's density. We first consider a mechanism resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we point out that an EPS may also occur in the case of a density-dependent superconducting pairing interaction. Finally, we show that the confinement of the 2DEG to the interface by a density-dependent, self-consistent electrostatic potential can by itself cause an EPS.Comment: 4 pages and 4 figures, Proceedings of the International Conference "Superstripes 2014", 25-31 July 2015, Erice, Ital
    corecore