8,676 research outputs found

    Into the Fray: Novice Teachers Tackle Standards-Based Mathematics

    Get PDF
    This article tracks twenty-one graduates of a refom-based mathematics teacher education program for two years as they begin teaching mathematics in public elementary schools in New York City. Using surveys, classroom observations, and interviews, it examines the extent to which these beginning teachers were able to implement standards-based mathematics instruction in their classes. Results of the study were mixed. The novice teachers generally demonstrated an adequate understanding of the underlying mathematics principles and strong intentions of teaching mathematics for understanding.They were generally able to engage children in learning, and most performed at the “beginning stages of effective instruction” in their first year. However, they still struggled to engage students in higher order thinking and knowledge construction. ln their second year their abilities improved, but they were still hampered by local factors such as insufficient in-service support, the restrictions of high-stakes testing, and the overall school climate

    van der Waals interactions of the benzene dimer: towards treatment of polycyclic aromatic hydrocarbon dimers

    Full text link
    Although density functional theory (DFT) in principle includes even long-range interactions, standard implementations employ local or semi-local approximations of the interaction energy and fail at describing the van der Waals interactions. We show how to modify a recent density functional that includes van der Waals interactions in planar systems [Phys. Rev. Lett. 91, 126402 (2003)] to also give an approximate interaction description of planar molecules. As a test case we use this modified functional to calculate the binding distance and energy for benzene dimers, with the perspective of treating also larger, flat molecules, such as the polycyclic aromatic hydrocarbons (PAH).Comment: 7 pages, 2 figures (3 figure files) submitted to Materials Science and Engineering

    Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters

    Full text link
    Numerical and semi-analytical models are presented for photon-enhanced-thermionic-emission (PETE) devices. The models take diffusion of electrons, inhomogeneous photogeneration, and bulk and surface recombination into account. The efficiencies of PETE devices with silicon cathodes are calculated. Our model predicts significantly different electron affinity and temperature dependence for the device than the earlier model based on a rate-equation description of the cathode. We show that surface recombination can reduce the efficiency below 10% at the cathode temperature of 800 K and the concentration of 1000 suns, but operating the device at high injection levels can increase the efficiency to 15%.Comment: 5 pages, 4 figure

    Zebrafish earns its stripes for in vivo ASC speck dynamics

    Get PDF
    Assembly of the ASC speck is critical for signaling by the inflammasome. In this issue, Kuri et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201703103) use live microscopy to track fluorescently tagged endogenous ASC in the zebrafish, describing the molecular domains driving ASC speck assembly and identifying a key role for macrophages in ASC speck removal in vivo

    Voltage modulated electro-luminescence spectroscopy and negative capacitance - the role of sub-bandgap states in light emitting devices

    Full text link
    Voltage modulated electroluminescence spectra and low frequency ({\leq} 100 kHz) impedance characteristics of electroluminescent diodes are studied. Voltage modulated light emission tracks the onset of observed negative capacitance at a forward bias level for each modulation frequency. Active participation of sub-bandgap defect states in minority carrier recombination dynamics is sought to explain the results. Negative capacitance is understood as a necessary dielectric response to compensate any irreversible transient changes in the minority carrier reservoir due to radiative recombinations mediated by slowly responding sub-bandgap defects. Experimentally measured variations of the in-phase component of modulated electroluminescence spectra with forward bias levels and modulation frequencies support the dynamic influence of these states in the radiative recombination process. Predominant negative sign of the in-phase component of voltage modulated electroluminescence signal further confirms the bi-molecular nature of light emission. We also discuss how these states can actually affect the net density of minority carriers available for radiative recombination. Results indicate that these sub-bandgap states can suppress external quantum efficiency of such devices under high frequency operation commonly used in optical communication.Comment: 21 pages, 4 sets of figure

    Multilevel convergence analysis of multigrid-reduction-in-time

    Full text link
    This paper presents a multilevel convergence framework for multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRIT V- and F-cycles, with different relaxation schemes, by deriving the respective residual and error propagation operators. The residual and error operators are functions of the time stepping operator, analyzed directly and bounded in norm, both numerically and analytically. We present various upper bounds of different computational cost and varying sharpness. These upper bounds are complemented by proposing analytic formulae for the approximate convergence factor of V-cycle algorithms that take the number of fine grid time points, the temporal coarsening factors, and the eigenvalues of the time stepping operator as parameters. The paper concludes with supporting numerical investigations of parabolic (anisotropic diffusion) and hyperbolic (wave equation) model problems. We assess the sharpness of the bounds and the quality of the approximate convergence factors. Observations from these numerical investigations demonstrate the value of the proposed multilevel convergence framework for estimating MGRIT convergence a priori and for the design of a convergent algorithm. We further highlight that observations in the literature are captured by the theory, including that two-level Parareal and multilevel MGRIT with F-relaxation do not yield scalable algorithms and the benefit of a stronger relaxation scheme. An important observation is that with increasing numbers of levels MGRIT convergence deteriorates for the hyperbolic model problem, while constant convergence factors can be achieved for the diffusion equation. The theory also indicates that L-stable Runge-Kutta schemes are more amendable to multilevel parallel-in-time integration with MGRIT than A-stable Runge-Kutta schemes.Comment: 26 pages; 17 pages Supplementary Material

    Heavy Meson Physics: What have we learned in Twenty Years?

    Full text link
    I give a personal account of the development of the field of heavy quarks. After reviewing the experimental discovery of charm and bottom quarks, I describe how the field's focus shifted towards determination of CKM elements and how this has matured into a precision science.Comment: This talk was presented during the ceremony awarding the Medalla 2003 of the Division of Particles and Fields of The Mexican Phsyical Society, at the IX Mexican Workshop on Particles and Fields; submitted for proceedings; 9 pages, 9 figures; replacement: fix multiple typo

    Experimental observation of moving intrinsic localized modes in germanium

    Get PDF
    Deep level transient spectroscopy shows that defects created by alpha irradiation of germanium are annealed by low energy plasma ions up to a depth of several thousand lattice units. The plasma ions have energies of 2-8eV and therefore can deliver energies of the order of a few eV to the germanium atoms. The most abundant defect is identified as the E-center, a complex of the dopant antimony and a vacancy with and annealing energy of 1.3eV as determined by our measurements. The inductively coupled plasma has a very low density and a very low flux of ions. This implies that the ion impacts are almost isolated both in time and at the surface of the semiconductor. We conclude that energy of the order of an eV is able to travel a large distance in germanium in a localized way and is delivered to the defects effectively. The most likely candidates are vibrational nonlinear wave packets known as intrinsic localized modes, which exist for a limited range of energies. This property is coherent with the fact that more energetic ions are less efficient at producing the annealing effect.Comment: 20 pages, 10 figure

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples
    corecore