30 research outputs found

    Arthroscopic decompression and notchplasty for long-standing anterior cruciate ligament impingement in a patient with multiple epiphyseal dysplasia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Multiple epiphyseal dysplasia is a genetically and clinically heterogeneous osteochondroplasia with symmetrical involvement. It is characterized by joint pain in childhood and early adulthood with early onset of osteoarthritis, mainly affecting the hips.</p> <p>Case presentation</p> <p>We report the case of a 20-year-old man of Asian origin with multiple epiphyseal dysplasia presenting with bilateral knee pain, stiffness and instability found to be caused by bilateral anterior cruciate ligament impingement on abnormal medial femoral condyles. Bilateral staged arthroscopic notchplasty was performed successfully, resulting in subjective relief of pain, and improved range of movement and stability.</p> <p>Conclusion</p> <p>Care should be taken not to exclude a diagnosis of multiple epiphyseal dysplasia when few of the characteristic radiographic features are evident but clinical suspicion is high. This case highlights the scope for subjective symptomatic improvement following a minimum of surgical intervention. We recommend limiting early intervention to managing symptomatic features rather than radiographic abnormalities alone.</p

    Conserved synteny at the protein family level reveals genes underlying Shewanella species’ cold tolerance and predicts their novel phenotypes

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Functional & Integrative Genomics 10 (2010): 97-110, doi:10.1007/s10142-009-0142-y.Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.This research was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research under the Genomics: GTL Program via the Shewanella Federation consortium
    corecore