27 research outputs found

    Optimization of the Secondary Drying Step in Freeze Drying Using TDLAS Technology

    No full text
    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (−22°C, −10°C, and 0°C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying

    Freeze-drying of proteins from a sucrose-glycine excipient system: Effect of formulation composition on the initial recovery of protein activity

    No full text
    The purpose of this study was to investigate the effect of sucrose-glycine excipient systems on the stability of selected model proteins during lyophilization. Recovery of protein activity after freeze-drying was examined for the model proteins lactate dehydrogenase and glucose 6-phosphate dehydrogenase in a sucrose-glycine-based excipient system in which the formulation composition was system-atically varied. In a sucrose-only excipient system, activity recovery of both model proteins is about 80% and is independent of sucrose concentration over a range from 1 to 40 mg/mL. When both sucrose and glycine are used and the ratio of the 2 excipients is varied, however, activity recovery decreases in a pattern that is consistent with the inhibition of activity recovery by glycine crystals, despite the presence of an adequate amount of sucrose to afford protection. Annealing of sucrose-glycine formulations causes a small but significant decrease in activity recovery relative to unannealed controls, whereas no annealing effect is observed with sucrose-only formulations. Addition of 0.01% polysorbate 80 to the formulation resulted in complete recovery of activity, irrespective of the sucroseglycine ratio or annealing. Addition of the same concentration of polysorbate 80 to the reconstitution medium caused an increase in activity recovery for each formulation, but the overall pattern remained unchanged. The data are consistent with an interfacial model for lyophilization-associated loss of protein activity involving denaturation at a solid/freeze-concentrate interface
    corecore