1,643 research outputs found
The light-quark contribution to the leading HVP term of the muon from twisted-mass fermions
We present a lattice calculation of the leading Hadronic Vacuum Polarization
(HVP) contribution of the light u- and d-quarks to the anomalous magnetic
moment of the muon, , adopting the gauge configurations
generated by the European Twisted Mass Collaboration with
dynamical quarks at three values of the lattice spacing with pion masses in the
range 210 - 450 MeV. Thanks to several lattices at fixed values of the
light-quark mass and scale but with different sizes we perform a careful
investigation of finite-volume effects (FVEs). In order to remove FVEs we
develop an analytic representation of the vector correlator, which describes
the lattice data for time distances larger than fm. The
representation is based on quark-hadron duality at small and intermediate time
distances and on the two-pion contributions in a finite box at larger time
distances. After extrapolation to the physical pion point and to the continuum
limit we obtain . Adding the
contribution of strange and charm quarks, obtained by ETMC, and an estimate of
the isospin-breaking corrections and quark-disconnected diagrams from the
literature we get , which is
consistent with recent results based on dispersive analyses of the experimental
cross section data for annihilation into hadrons. Using our analytic
representation of the vector correlator, taken at the physical pion mass in the
continuum and infinite volume limits, we provide the first eleven moments of
the polarization function and we compare them with recent results of the
dispersive analysis of the channels. We estimate also the
light-quark contribution to the missing part of not covered
in the MUonE experiment.Comment: 34 pages, 20 figures, 7 tables. Version to appear in PR
Hall probes: physics and application to magnetometry
This lecture aims to present an overview of the properties of Hall effect
devices. Descriptions of the Hall phenomenon, a review of the Hall effect
device characteristics and of the various types of probes are presented.
Particular attention is paid to the recent development of three-axis sensors
and the related techniques to cancel the offsets and the planar Hall effect.
The lecture introduces the delicate problem of the calibration of a
three-dimensional sensor and ends with a section devoted to magnetic
measurements in conventional beam line magnets and undulators.Comment: 40 pages, presented at the CERN Accelerator School CAS 2009:
Specialised Course on Magnets, Bruges, 16-25 June 200
Practical approach to diastolic dysfunction in light of the new guidelines and clinical applications in the operating room and in the intensive care
There is growing evidence both in the perioperative period and in the field of intensive care (ICU) on the association between left ventricular diastolic dysfunction (LVDD) and worse outcomes in patients. The recent American Society of Echocardiography and European Association of Cardiovascular Imaging joint recommendations have tried to simplify the diagnosis and the grading of LVDD. However, both an often unknown pre-morbid LV diastolic function and the presence of several confounders—i.e., use of vasopressors, positive pressure ventilation, volume loading—make the proposed parameters difficult to interpret, especially in the ICU. Among the proposed parameters for diagnosis and grading of LVDD, the two tissue Doppler imaging-derived variables e′ and E/e′ seem most reliable. However, these are not devoid of limitations. In the present review, we aim at rationalizing the applicability of the recent recommendations to the perioperative and ICU areas, discussing the clinical meaning and echocardiographic findings of different grades of LVDD, describing the impact of LVDD on patients’ outcomes and providing some hints on the management of patients with LVDD
Electromagnetic and strong isospin-breaking corrections to the muon from Lattice QCD+QED
We present a lattice calculation of the leading-order electromagnetic and
strong isospin-breaking corrections to the hadronic vacuum polarization (HVP)
contribution to the anomalous magnetic moment of the muon. We employ the gauge
configurations generated by the European Twisted Mass Collaboration (ETMC) with
dynamical quarks at three values of the lattice spacing ( fm) with pion masses between and
MeV. The results are obtained adopting the RM123 approach in the
quenched-QED approximation, which neglects the charges of the sea quarks. Quark
disconnected diagrams are not included. After the extrapolations to the
physical pion mass and to the continuum and infinite-volume limits the
contributions of the light, strange and charm quarks are respectively equal to
, and . At leading order in and we obtain , which is currently the most accurate determination of the
isospin-breaking corrections to .Comment: 23 pages, 7 figures, 5 tables. Version to appear in PRD. A bug in the
update of the strange and charm contributions is removed and an extended
discussion on the identification of the ground-state is included. arXiv admin
note: text overlap with arXiv:1808.00887, arXiv:1707.0301
Methods for the Evaluation of Quench Temperature Profiles and their Application for LHC Superconducting Short Dipole Magnets
This paper presents a study of the thermal effects on quench performance for several Large Hadron Collider single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise
Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD
We demonstrate that the leading and next-to-leading finite-volume effects in
the evaluation of leptonic decay widths of pseudoscalar mesons at
are universal, i.e. they are independent of the structure of the meson. This is
analogous to a similar result for the spectrum but with some fundamental
differences, most notably the presence of infrared divergences in decay
amplitudes. The leading non-universal, structure-dependent terms are of
(compared to the leading non-universal corrections in the
spectrum). We calculate the universal finite-volume effects, which requires an
extension of previously developed techniques to include a dependence on an
external three-momentum (in our case, the momentum of the final state lepton).
The result can be included in the strategy proposed in
Ref.\,\cite{Carrasco:2015xwa} for using lattice simulations to compute the
decay widths at , with the remaining finite-volume effects starting
at order . The methods developed in this paper can be generalised to
other decay processes, most notably to semileptonic decays, and hence open the
possibility of a new era in precision flavour physics
Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects
In Carrasco et al. we have recently proposed a method to calculate
electromagnetic corrections to leptonic decay widths of pseudoscalar mesons.
The method is based on the observation that the infrared divergent
contributions (that appear at intermediate stages of the calculation and that
cancel in physical quantities thanks to the Bloch-Nordsieck mechanism) are
universal, i.e. depend on the charge and the mass of the meson but not on its
internal structure. In this talk we perform a detailed analysis of the
finite-volume effects associated with our method. In particular we show that
also the leading finite-volume effects are universal and perform an
analytical calculation of the finite-volume leptonic decay rate for a
point-like meson
Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters
The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation thickness between the quench heaters and the coil has also been considered. The results show clear correlation between the positions of quench heaters, magnet protection parameters and temperature profiles. This study allowed a better understanding of the quench process mechanisms and the efficiency assessment of the different protection schemes
Strange and charm HVP contributions to the muon ( including QED corrections with twisted-mass fermions
We present a lattice calculation of the Hadronic Vacuum Polarization (HVP)
contribution of the strange and charm quarks to the anomalous magnetic moment
of the muon including leading-order electromagnetic corrections. We employ the
gauge configurations generated by the European Twisted Mass Collaboration
(ETMC) with dynamical quarks at three values of the lattice
spacing ( fm) with pion masses in the range
MeV. The strange and charm quark masses are tuned at
their physical values. Neglecting disconnected diagrams and after the
extrapolations to the physical pion mass and to the continuum limit we obtain:
,
and
,
for the strange
and charm contributions, respectively.Comment: 34 pages, 10 figures, 5 tables; version to appear in JHE
- …