1 research outputs found
Novel Feature for Catalytic Protein Residues Reflecting Interactions with Other Residues
Owing to their potential for systematic analysis, complex networks have been
widely used in proteomics. Representing a protein structure as a topology
network provides novel insight into understanding protein folding mechanisms,
stability and function. Here, we develop a new feature to reveal
correlations between residues using a protein structure network. In an original
attempt to quantify the effects of several key residues on catalytic residues, a
power function was used to model interactions between residues. The results
indicate that focusing on a few residues is a feasible approach to identifying
catalytic residues. The spatial environment surrounding a catalytic residue was
analyzed in a layered manner. We present evidence that correlation between
residues is related to their distance apart most environmental parameters of the
outer layer make a smaller contribution to prediction and ii catalytic residues
tend to be located near key positions in enzyme folds. Feature analysis revealed
satisfactory performance for our features, which were combined with several
conventional features in a prediction model for catalytic residues using a
comprehensive data set from the Catalytic Site Atlas. Values of 88.6 for
sensitivity and 88.4 for specificity were obtained by 10fold crossvalidation.
These results suggest that these features reveal the mutual dependence of
residues and are promising for further study of structurefunction
relationship