425 research outputs found
Mott transition in Cr-doped V2O3 studied by ultrafast reflectivity: electron correlation effects on the transient response
The ultrafast response of the prototype Mott-Hubbard system (V1-xCrx)2O3 was
systematically studied with fs pump-probe reflectivity, allowing us to clearly
identify the effects of the metal-insulator transition on the transient
response. The isostructural nature of the phase transition in this material
made it possible to follow across the phase diagram the behaviour of the
detected coherent acoustic wave, whose average value and lifetime depend on the
thermodynamic phase and on the correlated electron density of states. It is
also shown how coherent lattice oscillations can play an important role in some
changes affecting the ultrafast electronic peak relaxation at the phase
transition, changes which should not be mistakenly attributed to genuine
electronic effects. These results clearly show that a thorough understanding of
the ultrafast response of the material over several tenths of ps is necessary
to correctly interpret its sub-ps excitation and relaxation regime, and appear
to be of general interest also for other strongly correlated materials.Comment: 6 pages, 3 figures. Europhysics Letters (in press
Femtosecond x rays from laser-plasma accelerators
Relativistic interaction of short-pulse lasers with underdense plasmas has
recently led to the emergence of a novel generation of femtosecond x-ray
sources. Based on radiation from electrons accelerated in plasma, these sources
have the common properties to be compact and to deliver collimated, incoherent
and femtosecond radiation. In this article we review, within a unified
formalism, the betatron radiation of trapped and accelerated electrons in the
so-called bubble regime, the synchrotron radiation of laser-accelerated
electrons in usual meter-scale undulators, the nonlinear Thomson scattering
from relativistic electrons oscillating in an intense laser field, and the
Thomson backscattered radiation of a laser beam by laser-accelerated electrons.
The underlying physics is presented using ideal models, the relevant parameters
are defined, and analytical expressions providing the features of the sources
are given. Numerical simulations and a summary of recent experimental results
on the different mechanisms are also presented. Each section ends with the
foreseen development of each scheme. Finally, one of the most promising
applications of laser-plasma accelerators is discussed: the realization of a
compact free-electron laser in the x-ray range of the spectrum. In the
conclusion, the relevant parameters characterizing each sources are summarized.
Considering typical laser-plasma interaction parameters obtained with currently
available lasers, examples of the source features are given. The sources are
then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure
Observation of longitudinal and transverse self-injections in laser-plasma accelerators
Laser-plasma accelerators can produce high quality electron beams, up to
giga-electronvolts in energy, from a centimeter scale device. The properties of
the electron beams and the accelerator stability are largely determined by the
injection stage of electrons into the accelerator. The simplest mechanism of
injection is self-injection, in which the wakefield is strong enough to trap
cold plasma electrons into the laser wake. The main drawback of this method is
its lack of shot-to-shot stability. Here we present experimental and numerical
results that demonstrate the existence of two different self-injection
mechanisms. Transverse self-injection is shown to lead to low stability and
poor quality electron beams, because of a strong dependence on the intensity
profile of the laser pulse. In contrast, longitudinal injection, which is
unambiguously observed for the first time, is shown to lead to much more stable
acceleration and higher quality electron beams.Comment: 7 pages, 7 figure
Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators
Betatron x-ray emission in laser-plasma accelerators is a promising compact
source that may be an alternative to conventional x-ray sources, based on large
scale machines. In addition to its potential as a source, precise measurements
of betatron emission can reveal crucial information about relativistic
laser-plasma interaction. We show that the emission length and the position of
the x-ray emission can be obtained by placing an aperture mask close to the
source, and by measuring the beam profile of the betatron x-ray radiation far
from the aperture mask. The position of the x-ray emission gives information on
plasma wave breaking and hence on the laser non-linear propagation. Moreover,
the measurement of the longitudinal extension helps one to determine whether
the acceleration is limited by pump depletion or dephasing effects. In the case
of multiple injections, it is used to retrieve unambiguously the position in
the plasma of each injection. This technique is also used to study how, in a
capillary discharge, the variations of the delay between the discharge and the
laser pulse affect the interaction. The study reveals that, for a delay
appropriate for laser guiding, the x-ray emission only occurs in the second
half of the capillary: no electrons are injected and accelerated in the first
half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with
arXiv:1104.245
Angular momentum evolution in laser-plasma accelerators
The transverse properties of an electron beam are characterized by two
quantities, the emittance which indicates the electron beam extend in the phase
space and the angular momentum which allows for non-planar electron
trajectories. Whereas the emittance of electron beams produced in laser- plasma
accelerator has been measured in several experiments, their angular momentum
has been scarcely studied. It was demonstrated that electrons in laser-plasma
accelerator carry some angular momentum, but its origin was not established.
Here we identify one source of angular momentum growth and we present
experimental results showing that the angular momentum content evolves during
the acceleration
Single shot phase contrast imaging using laser-produced Betatron x-ray beams
Development of x-ray phase contrast imaging applications with a laboratory
scale source have been limited by the long exposure time needed to obtain one
image. We demonstrate, using the Betatron x-ray radiation produced when
electrons are accelerated and wiggled in the laser-wakefield cavity, that a
high quality phase contrast image of a complex object (here, a bee), located in
air, can be obtained with a single laser shot. The Betatron x-ray source used
in this proof of principle experiment has a source diameter of 1.7 microns and
produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and
10^9 photons per shot in the whole spectrum.Comment: 3 pages, 3 figure
Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation
Betatron X-ray radiation in laser-plasma accelerators is produced when
electrons are accelerated and wiggled in the laser-wakefield cavity. This
femtosecond source, producing intense X-ray beams in the multi kiloelectronvolt
range has been observed at different interaction regime using high power laser
from 10 to 100 TW. However, none of the spectral measurement performed were at
sufficient resolution, bandwidth and signal to noise ratio to precisely
determine the shape of spectra with a single laser shot in order to avoid shot
to shot fluctuations. In this letter, the Betatron radiation produced using a
80 TW laser is characterized by using a single photon counting method. We
measure in single shot spectra from 8 to 21 keV with a resolution better than
350 eV. The results obtained are in excellent agreement with theoretical
predictions and demonstrate the synchrotron type nature of this radiation
mechanism. The critical energy is found to be Ec = 5.6 \pm 1 keV for our
experimental conditions. In addition, the features of the source at this energy
range open novel perspectives for applications in time-resolved X-ray science.Comment: 5 pages, 4 figure
Three-dimensional Maxwell-Bloch calculation of the temporal profile of a seeded soft x-ray laser pulse
International audienceWe present three-dimensional modeling of amplification of a high-order harmonic seed by a soft x-ray laser plasma. The time-dependent evolution of the x-ray signal is determined from a fully dynamic Maxwell-Bloch calculation. At high seed intensities , a simplified one-dimensional calculation leads to strong Rabi-like temporal oscillations of the output signal. However, such oscillations have not been observed experimentally. Our three-dimensional calculations demonstrate that this is due to spatial non-uniformities in the plasma gain that cause the Rabi oscillations to dampen dramatically. Large amplitude Rabi-like oscillations are expected to appear only in long and uniform plasma. Such targets require optimized guiding techniques
- …