9,169 research outputs found

    New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences

    Full text link
    Motivated by the AMS project, we assume that after the Big Bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes and causes a repulsive force against the gravitation. A possible potential barrier prevents the mater(antimatter) particles to enter the space between two branes. However, by the quantum tunnelling, a sizable anti-matter flux may come to our brane. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which would be observed by the AMS detector.Comment: 10 pages, 4 figures and 2 tables. Replaced by new versio

    Bose-Einstein condensation in linear sigma model at Hartree and large N approximation

    Full text link
    The BEC of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall-Jackiw-Tomboulis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The BEC is discussed in chiral limit and non-chiral limit at Hartree approximation and also at large N approximation.Comment: 11 pages, 9 figure

    Critical Dimension for Stable Self-gravitating Stars in AdS

    Full text link
    We study the self-gravitating stars with a linear equation of state, P=aρP=a \rho, in AdS space, where aa is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which there exists a maximal mass configuration for a certain central energy density and when the central energy density continues to increase, the configuration becomes unstable. We find that the critical dimension depends on the parameter aa, it runs from d=11.1429d=11.1429 to 10.1291 as aa varies from a=0a=0 to 1. The lowest integer dimension for a dynamically stable self-gravitating configuration should be d=12d=12 for any a[0,1]a \in [0,1] rather than d=11d=11, the latter is the case of self-gravitating radiation configurations in AdS space.Comment: Revtex, 11 pages with 7 eps figure

    Spins of the supermassive black hole in M87: new constraints from TeV observations

    Full text link
    The rapid TeV γ\gamma-ray variability detected in the well-known nearby radio galaxy M87 implies an extremely compact emission region (5-10 Schwarzschild radii) near the horizon of the supermassive black hole in the galactic center. TeV photons are affected by dilution due to interaction with the radiation field of the advection-dominated accretion flow (ADAF) around the black hole, and can thus be used to probe the innermost regions around the black hole. We calculate the optical depth of the ADAF radiation field to the TeV photons and find it strongly depends on the spin of the black hole. We find that transparent radii of 10 TeV photons are of 5RS5R_{\rm S} and 13RS13R_{\rm S} for the maximally rotating and non-rotating black holes, respectively. With the observations, the calculated transparent radii strongly suggest the black hole is spinning fast in the galaxy. TeV photons could be used as a powerful diagnostic for estimating black hole spins in galaxies in the future.Comment: 4 pages, 4 figures. to appear in ApJ

    MAVS Is essential for primary CD4 + T cell immunity but not for recall T cell responses following an attenuated West Nile virus infection

    Get PDF
    ABSTRACT The use of pathogen recognition receptor (PRR) agonists and the molecular mechanisms involved have been the major focus of research in individual vaccine development. West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant has several features for an ideal vaccine candidate, including significantly reduced neuroinvasiveness, induction of strong adaptive immunity, and protection of mice from wild-type (WT) WNV infection. Here, we determined the role of mitochondrial antiviral signaling protein (MAVS), the adaptor protein for RIG-I-like receptor in regulating host immunity against the NS4B-P38G vaccine. We found that Mavs −/− mice were more susceptible to NS4B-P38G priming than WT mice. Mavs −/− mice had a transiently reduced production of antiviral cytokines and an impaired CD4 + T cell response in peripheral organs. However, antibody and CD8 + T cell responses were minimally affected. NS4B-P38G induced lower type I interferon (IFN), IFN-stimulating gene, and proinflammatory cytokine responses in Mavs −/− dendritic cells and subsequently compromised the antigen-presenting capacity for CD4 + T cells. Interestingly, Mavs −/− mice surviving NS4B-P38G priming were all protected from a lethal WT WNV challenge. NS4B-P38G-primed Mavs −/− mice exhibited equivalent levels of protective CD4 + T cell recall response, a modestly reduced WNV-specific IgM production, but more robust CD8 + T cell recall response. Taken together, our results suggest that MAVS is essential for boosting optimal primary CD4 + T cell responses upon NS4B-P38G vaccination and yet is dispensable for host protection and recall T cell responses during secondary WT WNV infection. IMPORTANCE The production of innate cytokines induced by the recognition of pathogen recognition receptors (PRRs) via their cognate ligands are critical for enhancing antigen-presenting cell functions and influencing T cell responses during microbial infection. The use of PRR agonists and the underlying molecular mechanisms have been the major focus in individual vaccine development. Here, we determined the role of mitochondrial antiviral-signaling protein (MAVS), the adaptor protein for RIG-I like receptor in regulating host immunity against the live attenuated West Nile virus (WNV) vaccine strain, the nonstructural (NS) 4B-P38G mutant. We found that MAVS is important for boosting optimal primary CD4 + T cell response during NS4B-P38G vaccination. However, MAVS is dispensable for memory T cell development and host protection during secondary wild-type WNV infection. Overall, these results may be utilized as a paradigm to aid in the rational development of other efficacious live attenuated flavivirus vaccines

    Non-Abelian Medium Effects in Quark-Gluon Plasma

    Get PDF
    Based on the kinetic theory, the non-Abelian medium property of hot Quark-Gluon Plasma is investigated. The nonlinearity of the plasma comes from two aspects: The nonlinear wave-wave interaction and self-interaction of color field. The non-Abelian color permittivity is obtained by expanding the kinetic equations to third order. As an application, the nonlinear Landau damping rate and the nonlinear eigenfrequency shift are calculated in the longwave length limit.Comment: 12 pages(Revtex), no figure
    corecore