112,007 research outputs found

    Use of Multiple Methods: An Examination of Constraints Effecting Ethnic Minority Visitor Use of National Parks and Management Implications

    Get PDF
    Understanding outdoor recreation participation and national park visitation by members of ethnic minority groups has been a particular focus of outdoor recreation researchers for the past twenty years. Attracting ethnic minorities, and understanding their recreation needs and interests, demands a multi-faceted approach and sustained commitment not only by the U.S. National Park Service (NPS) but by other resource management agencies as well

    Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    Get PDF
    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B=0B=0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the BB-induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.Comment: 6 pages, 6 figure

    Resonant Tunneling and Intrinsic Bistability in Twisted Graphene Structures

    Get PDF
    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable II-VV characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or non-resonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.Comment: 7 pages, 4 figure

    2D massless QED Hall half-integer conductivity and graphene

    Full text link
    Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system CC non-invariant under fermion-antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature the main features of quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to e2/he^2/h for the Hall conductivity . For typical values of graphene the plateaus of the Hall conductivity are also reproduced.Comment: 14 pages, 2 figure
    corecore