58 research outputs found
Determination of biological activity of gonadotropins hCG and FSH by Forster resonance energy transfer based biosensors
Determination of biological activity of gonadotropin hormones is essential in reproductive medicine and pharmaceutical manufacturing of the hormonal preparations. The aim of the study was to adopt a G-protein coupled receptor (GPCR)-mediated signal transduction pathway based assay for quantification of biological activity of gonadotropins. We focussed on studying human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH), as these hormones are widely used in clinical practice. Receptor-specific changes in cellular cyclic adenosine monophosphate (cAMP, second messenger in GPCR signalling) were monitored by a Forster resonance energy transfer (FRET) biosensor protein (T)Epac(VV) in living cells upon activation of the relevant gonadotropin receptor. The BacMam gene delivery system was used for biosensor protein expression in target cells. In the developed assay only biologically active hormones initiated GPCR-mediated cellular signalling. High assay sensitivities were achieved for detection of hCG (limit of detection, LOD: 5 pM) and FSH (LOD: 100 pM). Even the smallscale conformational changes caused by thermal inactivation and reducing the biological activity of the hormones were registered. In conclusion, the proposed assay is suitable for quantification of biological activity of gonadotropins and is a good alternative to antibody- and animal-testing-based assays used in pharmaceutical industry and clinical research.Peer reviewe
Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG
While human chorionic gonadotropin (hCG) appears to have an essential role in early pregnancy, it is controversial whether the hyperglycosylated form of hCG (hCG-h), which is the major hCG isoform during the first 4-5 weeks of pregnancy, is able to activate LH/hCG receptor (LHCGR). To address this, we utilized different extensively characterized hCG and hCG beta reference reagents, cell culture- and urine-derived hCG-h preparations, and an in vitro reporter system for LHCGR activation. The WHO hCG reference reagent (99/688) was found to activate LHCGR with an EC50-value of 3.3 +/- 0.6 pmol/L (n = 9). All three studied hCG-h preparations were also able to activate LHCGR, but with a lower potency (EC50-values between 7.1 +/- 0.5 and 14 +/- 3 pmol/L, n = 5-11, for all P <0.05 as compared to the hCG reference). The activities of commercial urinary hCG (Pregnyl) and recombinant hCG (Ovitrelle) preparations were intermediate between those of the hCG reference and the hCG-h. These results strongly suggest that the hCG-h is functionally similar to hCG, although it has lower potency for LHCGR activation. Whether this explains the reduced proportion of hCG-h to hCG reported in patients developing early onset pre-eclampsia or those having early pregnancy loss remains to be determined.Peer reviewe
Low nonpaternity rate in an old Afrikaner family
Extrapair paternity is a crucial parameter for evolutionary explanations of reproductive
behavior. Early studies and human testis size suggest that human males secure/suffer
frequent extrapair paternity. If these high rates are indeed true, it brings into question
studies that use genealogies to infer human life history and the history of diseases since the
recorded genealogies do not reflect paths of genetic inheritance. We measure the rate of
nonpaternity in an old Afrikaner family in South Africa by comparing Y-chromosome short
tandem repeats to the genealogy of males. In this population, the nonpaternity rate was
0.73%. This low rate is observed in other studies that matched genealogies to genetic
markers and more recent studies that also find estimates below 1%. It may be that imposed
religious morals have led to reduced extrapair activities in some historic populations. We
also found that the mutation rate is high for this family, but is unrelated to age at
conception.http://www.ehbonline.orghb2016Genetic
Replication Fork Reversal after Replication–Transcription Collision
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication–transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication–transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle
Physical Analyses of E. coli Heteroduplex Recombination Products In Vivo: On the Prevalence of 5′ and 3′ Patches
BACKGROUND: Homologous recombination in Escherichia coli creates patches (non-crossovers) or splices (half crossovers), each of which may have associated heteroduplex DNA. Heteroduplex patches have recombinant DNA in one strand of the duplex, with parental flanking markers. Which DNA strand is exchanged in heteroduplex patches reflects the molecular mechanism of recombination. Several models for the mechanism of E. coli RecBCD-mediated recombinational double-strand-end (DSE) repair specify that only the 3'-ending strand invades the homologous DNA, forming heteroduplex in that strand. There is, however, in vivo evidence that patches are found in both strands. METHODOLOGY/PRINCIPLE FINDINGS: This paper re-examines heteroduplex-patch-strand polarity using phage lambda and the lambdadv plasmid as DNA substrates recombined via the E. coli RecBCD system in vivo. These DNAs are mutant for lambda recombination functions, including orf and rap, which were functional in previous studies. Heteroduplexes are isolated, separated on polyacrylamide gels, and quantified using Southern blots for heteroduplex analysis. This method reveals that heteroduplexes are still found in either 5' or 3' DNA strands in approximately equal amounts, even in the absence of orf and rap. Also observed is an independence of the RuvC Holliday-junction endonuclease on patch formation, and a slight but statistically significant alteration of patch polarity by recD mutation. CONCLUSIONS/SIGNIFICANCE: These results indicate that orf and rap did not contribute to the presence of patches, and imply that patches occurring in both DNA strands reflects the molecular mechanism of recombination in E. coli. Most importantly, the lack of a requirement for RuvC implies that endonucleolytic resolution of Holliday junctions is not necessary for heteroduplex-patch formation, contrary to predictions of all of the major previous models. This implies that patches are not an alternative resolution of the same intermediate that produces splices, and do not bear on models for splice formation. We consider two mechanisms that use DNA replication instead of endonucleolytic resolution for formation of heteroduplex patches in either DNA strand: synthesis-dependent-strand annealing and a strand-assimilation mechanism
Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability
Extracellular vesicles (EVs), including exosomes and microvesicles (<200 nm), play a vital role in intercellular communication and carry a net negative surface charge under physiological conditions. Zeta potential (ZP) is a popular method to measure the surface potential of EVs, while used as an indicator of surface charge, and colloidal stability influenced by surface chemistry, bioconjugation, and the theoretical model applied. Here, we investigated the effects of such factors on ZP of well-characterized EVs derived from the human choriocarcinoma JAr cells. The EVs were suspended in phosphate-buffered saline (PBS) of various phosphate ionic concentrations (0.01, 0.1, and 1 mM), with or without detergent (Tween-20), or in the presence (10 mM) of different salts (NaCl, KCl, CaCl2, and AlCl3) and at different pH values (4, 7, and 10) while the ZP was measured. The ZP changed inversely with the buffer concentration, while Tween-20 caused a significant (p < 0.05) lowering of the ZP. Moreover, the ZP was significantly (p < 0.05) less negative in the presence of ions with higher valency (Al3+/Ca2+) than in the presence of monovalent ones (Na+/K+). Besides, the ZP of EVs became less negative at acidic pH, and vice versa. The integrated data underpins the crucial role of physicochemical attributes that influence the colloidal stability of EVs
After diagnosis HIV, the prospect of finitude, and biographical self-construction
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
- …