342 research outputs found

    The importance of genetic parenthood for infertile men and women

    Get PDF
    STUDY QUESTION: Do men and women beginning to attend a fertility clinic prefer genetic over non-genetic parenthood? SUMMARY ANSWER: Nearly, all infertile men and women prefer genetic parenthood. WHAT IS KNOWN ALREADY: Clinicians assume that all infertile couples prefer genetic parenthood over non-genetic parenthood and, therefore, consider treatments with donor gametes an option of last resort. Previous studies of the desire for parenthood identified 30 motivations for genetic parenthood, and 51 motivations for which having a genetically related child is not strictly necessary but might be deemed required. The exact strength of the preference of infertile men and women for genetic parenthood remains unclear, as does the importance of the various motivations. STUDY DESIGN, SIZE, DURATION: A questionnaire was developed based on a literature review. It was assessed by professionals and pilot tested among patients. The coded paper-pencil questionnaire was disseminated among both partners of 201 heterosexual infertile couples after their first consultation at one of two Belgian fertility clinics between October 2015 and May 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS: The survey addressed: (i) the preference for genetic parenthood for themselves and for their partner, (ii) the importance of 30 motivations for genetic parenthood and (iii) the importance of 51 other motivations for parenthood and whether these motivations require being the genetic parent of their child to be fulfilled. To simplify presentation of the results, all 81 motivations were grouped into reliable categories of motivations using psychometric analyses. MAIN RESULTS AND THE ROLE OF CHANCE: The survey was completed by 104 women and 91 men (response rate: 49%). Almost all respondents (98%) favored genetic over non-genetic parenthood for both their partner and themselves. One-third of the respondents stated they only wanted to parent their own genetically related child. Achieving genetic parenthood for their partner was considered significantly more important than achieving genetic parenthood for themselves. Within couples, men had a stronger preference for genetic parenthood (P = 0.004), but this was not significant after correction for educational level, which was significantly associated with the preference of both men and women. The 30 motivations for becoming a genetic parent clustered into 11 categories of which 'to experience a natural process' was deemed most important. The 51 motivations for becoming a parent for which having a genetically related child is not strictly necessary clustered into 14 categories of which 'to contribute to a child's well-being' and 'to experience the love of a child' were most important. Respondents deemed they would need to be the genetic parent of their child to fulfill nearly all their motivations for parenthood. LIMITATIONS REASONS FOR CAUTION: We included couples that visited the fertility clinic for the first time, and the preference for genetic parenthood might change throughout a fertility treatment trajectory. Moreover, what prospective parents expect to be important for their future well-being might not really define parents' well-being. WIDER IMPLICATIONS OF THE FINDINGS: The presumed preference of couples for genetic parenthood was confirmed. Resistance against using donor gametes is more likely among lower educated individuals. Researching whether non-genetic parents actually feel they cannot fulfill the 51 motivations for parenthood, could be a basis for developing patient informatio

    Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content

    Get PDF
    LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut

    Genetic integrity of the human Y chromosome exposed to groundwater arsenic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic is a known human carcinogen reported to cause chromosomal deletions and genetic anomalies in cultured cells. The vast human population inhabiting the Ganges delta in West Bengal, India and Bangladesh is exposed to critical levels of arsenic present in the groundwater. The genetic and physiological mechanism of arsenic toxicity in the human body is yet to be fully established. In addition, lack of animal models has made work on this line even more challenging.</p> <p>Methods</p> <p>Human male blood samples were collected with their informed consent from 5 districts in West Bengal having groundwater arsenic level more than 50 μg/L. Isolation of genomic DNA and preparation of metaphase chromosomes was done using standard protocols. End point PCR was performed for established sequence tagged sites to ascertain the status of recombination events. Single nucleotide variants of candidate genes and amplicons were carried out using appropriate restriction enzymes. The copy number of DYZ1 array per haploid genome was calculated using real time PCR and its chromosomal localization was done by fluorescence in-situ hybridization (FISH).</p> <p>Results</p> <p>We studied effects of arsenic exposure on the human Y chromosome in males from different areas of West Bengal focusing on known recombination events (P5-P1 proximal; P5-P1 distal; gr/gr; TSPY-TSPY, b1/b3 and b2/b3), single nucleotide variants (SNVs) of a few candidate Y-linked genes (DAZ, TTY4, BPY2, GOLGA2LY) and the amplicons of AZFc region. Also, possible chromosomal reorganization of DYZ1 repeat arrays was analyzed. Barring a few microdeletions, no major changes were detected in blood DNA samples. SNV analysis showed a difference in some alleles. Similarly, DYZ1 arrays signals detected by FISH were found to be affected in some males.</p> <p>Conclusions</p> <p>Our Y chromosome analysis suggests that the same is protected from the effects of arsenic by some unknown mechanisms maintaining its structural and functional integrities. Thus, arsenic effects on the human body seem to be different compared to that on the cultured cells.</p

    Patient perspectives of managing fatigue in ankylosing spondylitis, and views on potential interventions: a qualitative study

    Get PDF
    &lt;p&gt;Background: Fatigue is a major component of living with ankylosing spondylitis (AS), though it has been largely over-looked, and currently there are no specific agreed management strategies.&lt;/p&gt; &lt;p&gt;Methods: This qualitative exploratory study involved participants who are members of an existing population-based ankylosing spondylitis (PAS) cohort. Participants residing in South West Wales were invited to participate in a focus group to discuss; (1) effects of fatigue, (2) self-management strategies and (3) potential future interventions. The focus groups were audio-recorded and the transcripts were analysed using thematic analysis.&lt;/p&gt; &lt;p&gt;Results: Participants consisted of 3 males/4 females (group 1) and 4 males/3 females (group 2), aged between 35 and 73 years (mean age 53 years). Three main themes were identified: (1) The effects of fatigue were multi-dimensional with participants expressing feelings of being ‘drained’ (physical), ‘upset’ (emotional) and experiencing ‘low-mood’ (psychological); (2) The most commonly reported self-management strategy for fatigue was a balanced combination of activity (exercise) and rest. Medication was reluctantly taken due to side-effects and worries over dependency; (3) Participants expressed a preference for psychological therapies rather than pharmacological for managing fatigue. Information on Mindfulness-Based Stress Reduction (MBSR) was received with interest, with recommendations for delivery in a group format with the option of distance-based delivery for people who were not able to attend a group course.&lt;/p&gt; &lt;p&gt;Conclusions: Patients frequently try and manage their fatigue without any formal guidance or support. Our research indicates there is a need for future research to focus on psychological interventions to address the multi-faceted aspects of fatigue in AS.&lt;/p&gt

    Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions

    Get PDF
    The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages

    Female subfertility

    Get PDF
    The WHO defines female subfertility as failure to achieve a clinical pregnancy after 12 months of regular intercourse or due to impairment of a woman’s capacity to reproduce. This PrimeView highlights some of the mechanisms that may contribute to this condition
    • …
    corecore