85 research outputs found

    Role of Li_2B_(12)H_(12) for the Formation and Decomposition of LiBH_4

    Get PDF
    By in situ X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy, the role of Li_2B_(12)H_(12) for the sorption of LiBH_4 is analyzed. We demonstrate that Li_2B_(12)H_(12) and an amorphous Li_2B_(10)H_(10) phase are formed by the reaction of LiBH_4 with diborane (B_2H_6) at 200 °C. Based on our present results, we propose that the Li -2B - (12)H_(12) formation in the desorption of LiBH_4 can be explained as a result of reaction of diborane and LiBH_4. This reaction of the borohydride with diborane may also be observed for other borohydrides, where B_(12)H_(12) phases are found during decomposition

    Proximity effect of vanadium on spin-density-wave magnetism in Cr films

    Full text link
    The spin-density wave (SDW) state in thin chromium films is well known to be strongly affected by proximity effects from neighboring layers. To date the main attention has been given to effects arising from exchange interactions at interfaces. In the present work we report on combined neutron and synchrotron scattering studies of proximity effects in Cr/V films where the boundary condition is due to the hybridization of Cr with paramagnetic V at the interface. We find that the V/Cr interface has a strong and long-range effect on the polarization, period, and the N\'{e}el temperature of the SDW in rather thick Cr films. This unusually strong effect is unexpected and not predicted by theory.Comment: 7 figure

    The hyperfine properties of a hydrogenated Fe/V superlattice

    Full text link
    : We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({\rho}), the contact hyperfine field (Bhf) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method . It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.Comment: 6 pages, 2 figures, 3 tables, ICAME 2011 conference (Kobe, Japan

    Isotope effects in switchable metal-hydride mirrors

    Get PDF
    Measurements of optical reflectance, transmittance, and electrical resistivity on the switchable mirror systems YHx and YDx show that the absorption of hydrogen induces the same variations as that of deuterium. In both cases there is a weak transparency window for the metallic dihydride (dideuteride) phase and a yellowish transparency in the insulating trihydride (trideuteride) phase. The slightly higher electrical resistivity of the deuterides is related to the lower energy of their optical phonons. The absence of significant isotope effects in the optical properties of YHx(YDx) is at variance with Peierls-like theoretical models. It is, however, compatible with strong electron correlation model

    Generation and detection of H electrodiffusion waves

    Get PDF
    A study was conducted on the generation and detection of H electrodiffusion waves. The applied electric field was used to spatially modulate the H concentration in a thin V film, to drive H pulses and to control the hydrogen uptake of the sample. The migration of H in transition metals was visualized by using the switchable mirror material as an optical hydrogen indicator

    Breaking the passivation-the road to a solvent free borohydride synthesis

    No full text
    We describe a new method for the solvent-free synthesis of borohydrides at room temperature and demonstrate its feasibility by the synthesis of three of the most discussed borohydrides at present: LiBH4, Mg(BH 4)2 and Ca(BH4)2. This new gas-solid mechanochemical synthesis method is based on the reaction of metal hydrides with diborane to form the corresponding borohydrides. The synthesis will facilitate the preparation of a wide range of different borohydrides, including mixed borohydride systems, with tuneable sorption properties. We propose that diborane is an intermediate compound for the hydrogen sorption in borohydrides and may be the key for a reversible hydrogen ab- and desorption reaction under moderate conditions. © 2010 the Owner Societies
    corecore