37 research outputs found

    Tendon collagen synthesis declines with immobilization in elderly humans:no effect of anti-inflammatory medication

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are used as pain killers during periods of unloading caused by traumatic occurrences or diseases. However, it is unknown how tendon protein turnover and mechanical properties respond to unloading and subsequent reloading in elderly humans, and whether NSAID treatment would affect the tendon adaptations during such periods. Thus we studied human patellar tendon protein synthesis and mechanical properties during immobilization and subsequent rehabilitating resistance training and the influence of NSAIDs upon these parameters. Nineteen men (range 60–80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased ( P &lt; 0.001), whereas tendon mechanical properties and size were generally unchanged with immobilization, and NSAIDs did not influence this. Matrix metalloproteinase-2 mRNA tended to increase ( P &lt; 0.1) after immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only ( P &lt; 0.05). In elderly human tendons, collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this. This indicates an importance of mechanical loading for maintenance of tendon collagen turnover. However, reduced collagen production induced by short-term unloading may only marginally affect tendon mechanical properties in elderly individuals.NEW &amp; NOTEWORTHY In elderly humans, 2 wk of inactivity reduces tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short-term immobilization may only have minor impact on the internal structures that are essential for mechanical properties in elderly tendons.</jats:p

    Effects of whey protein alone or as part of a multi-ingredient formulation on strength, fat-free mass, or lean body mass in resistance-trained individuals: A meta-analysis

    Get PDF
    BACKGROUND: Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. OBJECTIVE: We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. METHODS: A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. RESULTS: Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated with small extra gains in fat-free mass or lean body mass, resulting in an effect size of g = 0.301, 95% confidence interval (CI) 0.032-0.571. Subgroup analyses showed less clear positive trends resulting in small to moderate effect size g = 0.217 (95% CI -0.113 to 0.547) and g = 0.468 (95% CI 0.003-0.934) in favor of whey and multi-ingredient, respectively. Additionally, a positive overall extra effect was also observed to maximize lower (g = 0.316, 95% CI 0.045-0.588) and upper body maximal strength (g = 0.458, 95% CI 0.161-0.755). Subgroup analyses showed smaller superiority to maximize strength gains with respect to the contrast groups for lower body (whey protein: g = 0.343, 95% CI -0.016 to 0.702, multi-ingredient: g = 0.281, 95% CI -0.135 to 0.697) while in the upper body, multi-ingredient (g = 0.612, 95% CI 0.157-1.068) seemed to produce more clear effects than whey protein alone (g = 0.343, 95% CI -0.048 to 0.735). LIMITATIONS: Studies involving interventions of more than 6 weeks on resistance-training individuals are scarce and account for a small number of participants. Furthermore, no studies with an intervention longer than 12 weeks have been found. The variation regarding the supplementation protocol, namely the different doses criteria or timing of ingestion also add some concerns to the studies comparison. CONCLUSIONS: Whey protein alone or as a part of a multi-ingredient appears to maximize lean body mass or fat-free mass gain, as well as upper and lower body strength improvement with respect to the ingestion of an iso-energetic equivalent carbohydrate or non-whey protein supplement in resistance-training individuals. This enhancement effect seems to be more evident when whey proteins are consumed within a multi-ingredient containing creatine

    Counteracting Age-related Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial

    Full text link

    Lower basal and postprandial muscle protein synthesis after 2 weeks single‐leg immobilization in older men: No protective effect of anti‐inflammatory medication

    No full text
    Abstract Muscle inactivity may reduce basal and postprandial muscle protein synthesis (MPS) rates in humans. Anti‐inflammatory treatment alleviates the MPS impairments in younger individuals. The present study explored the influence of nonsteroidal anti‐inflammatory drugs (NSAIDs) upon MPS during a period of inactivity in older humans. Eighteen men (age 60–80 years) were allocated to ibuprofen (1200 mg/day, Ibu) or control (Plc) groups. One lower limb was cast immobilized for 2 weeks. Postabsorptive and postprandial MPS was measured before and after the immobilization by L‐[ring‐13C6]‐phenylalanine infusion. The protein expression of select anabolic signaling molecules was investigated by western blot. Basal (0.038 ± 0.002%/h and 0.039 ± 0.005%/h, Plc and Ibu, respectively) and postprandial (0.064 ± 0.004%/h and 0.067 ± 0.010%/h, Plc and Ibu, respectively) MPS rate were higher pre‐immobilization compared to basal (0.019 ± 0.005%/h and 0.020 ± 0.010%/h, Plc and Ibu, respectively) and postprandial (0.033 ± 0.005%/h and 0.037 ± 0.006%/h, Plc and Ibu, respectively) MPS rate post‐immobilization (p  0.05). The anabolic signaling were in general reduced after immobilization (p  0.05). Basal and postprandial MPS dropped markedly after 2 weeks of lower limb immobilization. NSAID treatment neither influenced the reduction in MPS nor the anabolic signaling after immobilization in healthy older individuals
    corecore