188 research outputs found
Recommended from our members
A New Mutual Information based Similarity Measure for Medical Image Registration
Medical image registration (IR) is the systematic process of aligning spate images, often involving different modalities with common reference framework, so complementary information can be combined and compared. This paper presents a new similarity measure which uses Expectation Maximization for Principal Component Analysis allied with mutual information (EMPCA-MI) for medical IR. The new measure has been analysed on multimodal, three band magnetic resonance images (MRI) T1, T2 and PD weighted, in the presence of both intensity non-uniformities (INU) and noise. Both quantitative and qualitative experimental results clearly demonstrate both improved robustness and lower computational complexity of the new EMPCA-MI paradigm compared with existing MI-based similarity measures, for various MRI test datasets
Whole blood methylome-derived features to discriminate endocrine hypertension
BACKGROUND
Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (nтАЙ=тАЙ42) or EHT (nтАЙ=тАЙ213), and at identifying specific discriminating signatures using machine learning approaches.
RESULTS
Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods-Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine-predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL.
CONCLUSIONS
The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder
Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios
Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification
Efficient Image Registration using Fast Principal Component Analysis
Incorporating spatial features with mutual information (MI) has demonstrated superior image registration performance compared with traditional MI-based methods, particularly in the presence of noise and intensity non-uniformities (INU). This paper presents a new efficient MI-based similarity measure which applies Expectation Maximisation for Principal Component Analysis (EMPCA-MI), to afford significantly lower computational complexity, while providing analogous image registration performance with other feature-based MI solutions. Experimental analysis corroborates both the improved robustness and faster runtimes of EMPCA-MI, for different test datasets containing both INU and noise artefacts
Disocclusion Hole-Filling in DIBR-Synthesized Images using Multi-Scale Template Matching
Transmitting texture and depth images of captured camera view(s) of a 3D scene enables a receiver to synthesize novel virtual viewpoint images via Depth-Image-Based Rendering (DIBR). However, a DIBR-synthesized image often contains disocclusion holes, which are spatial regions in the virtual view image that were occluded by foreground objects in the captured camera view(s). In this paper, we propose to complete these disocclusion holes by exploiting the self-similarity characteristic of natural images via nonlocal template-matching (TM). Specifically, we first define self-similarity as nonlocal recurrences of pixel patches within the same image across different scales--one characterization of self-similarity in a given image is the scale range in which these patch recurrences take place. Then, at encoder we segment an image into multiple depth layers using available per-pixel depth values, and characterize self-similarity in each layer with a scale range; scale ranges for all layers are transmitted as side information to the decoder. At decoder, disocclusion holes are completed via TM on a per-layer basis by searching for similar patches within the designated scale range. Experimental results show that our method improves the quality of rendered images over previous disocclusion hole-filling algorithms by up to 3.9dB in PSNR
Enhanced retinal image registration accuracy using expectation maximisation and variable bin-sized mutual information
While retinal images (RI) assist in the diagnosis of various eye conditions and diseases such as glaucoma and diabetic retinopathy, their innate features including low contrast homogeneous and nonuniformly illuminated regions, present a particular challenge for retinal image registration (RIR). Recently, the hybrid similarity measure, Expectation Maximization for Principal Component Analysis with Mutual Information (EMPCA-MI) has been proposed for RIR. This paper investigates incorporating various fixed and adaptive bin size selection strategies to estimate the probability distribution in the mutual information (MI) stage of EMPCA-MI, and analyses their corresponding effect upon RIR performance. Experimental results using a clinical mono-modal RI dataset confirms that adaptive bin size selection consistently provides both lower RIR errors and superior robustness compared to the empirically determined fixed bin sizes
Multimodal retinal image registration using a fast principal component analysis hybrid-based similarity measure
Multimodal retinal images (RI) are extensively used for analysing various eye diseases and conditions such as myopia and diabetic retinopathy. The incorporation of either two or more RI modalities provides complementary structure information in the presence of non-uniform illumination and low-contrast homogeneous regions. It also presents significant challenges for retinal image registration (RIR). This paper investigates how the Expectation Maximization for Principal Component Analysis with Mutual Information (EMPCA-MI) algorithm can effectively achieve multimodal RIR. This iterative hybrid-based similarity measure combines spatial features with mutual information to provide enhanced registration without recourse to either segmentation or feature extraction. Experimental results for clinical multimodal RI datasets comprising colour fundus and scanning laser ophthalmoscope images confirm EMPCA-MI is able to consistently afford superior numerical and qualitative registration performance compared with existing RIR techniques, such as the bifurcation structures method
Why finance professors should be teaching Nietzsche
<p><strong>Abstract:</strong> Retinal images (RI) are widely used to diagnose a variety of eye conditions and diseases such as myopia and diabetic retinopathy. They are inherently characterised by having nonuniform illumination and low-contrast homogeneous regions which represent a unique set of challenges for retinal image registration (RIR). This paper investigates using the expectation maximization for principal component analysis based mutual information (EMPCA-MI) algorithm in RIR. It combines spatial features with mutual information to efficiently achieve improved registration performance. Experimental results for mono-modal RI datasets verify that EMPCA-MI<br>together with Powell-Brent optimization affords superior robustness in comparison with existing RIR methods, including the geometrical features method.</p>
<p><br><strong>Index Terms</strong>тАФ Image registration, principal component analysis, mutual information, expectation-maximization algorithms, retinopathy.</p>
<p>┬а</p>
<p><strong>Poster presented at</strong>: 38th International Conference on Acoustics, Speech, and Signal Processing<br>(ICASSP), 26th to 31st May 2013, Vancouver, Canada.<br>doi: 10.1109/ICASSP.2013.6637824</p
Sexing white 2D footprints using convolutional neural networks
Footprints are left, or obtained, in a variety of scenarios from crime scenes to anthropological investigations. Determining the sex of a footprint can be useful in screening such impressions and attempts have been made to do so using single or multi landmark distances, shape analyses and via the density of friction ridges. Here we explore the relative importance of different components in sexing two-dimensional foot impressions namely, size, shape and texture. We use a machine learning approach and compare this to more traditional methods of discrimination. Two datasets are used, a pilot data set collected from students at Bournemouth University (N = 196) and a larger data set collected by podiatrists at Sheffield NHS Teaching Hospital (N = 2677). Our convolutional neural network can sex a footprint with accuracy of around 90% on a test set of N = 267 footprint images using all image components, which is better than an expert can achieve. However, the quality of the impressions impacts on this success rate, but the results are promising and in time it may be possible to create an automated screening algorithm in which practitioners of whatever sort (medical or forensic) can obtain a first order sexing of a two-dimensional footprint
- тАж