4,565 research outputs found
Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37
We present near-infrared imaging and spectroscopic observations of two FR II
high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2),
obtained with the Hubble, Keck, and Hale Telescopes. High resolution images
were taken with filters both in and out of strong emission lines, and together
with the spectroscopic data, the properties of the line and continuum emissions
were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that
strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to
the broad-band fluxes much more significantly than previously estimated (80%
vs. 20-40%), and that when the continuum sources are imaged through line-free
filters, they show an extremely compact morphology with a high surface
brightness. If we use the R^1/4-law parametrization, their effective radii
(r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at
r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the
former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is
predicted from the I(B)-r(e) correlation. Although exponential profiles produce
equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with
respect to the z~1 3CR radio galaxies, the light distribution of these two
HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a
flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a
local giant elliptical galaxy. Although this difference may be explained in
terms of a varying degree of star formation, the similarities of their surface
brightness profiles and the submillimeter detection of 4C 39.37 might suggest
that the intrinsic spectra is equally blue (young stars or an AGN), and that
the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in
  Astronomical Journa
The radio luminosity function of radio-loud quasars from the 7C Redshift Survey
We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C
Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density
S_151 > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of
these have sufficient extended flux to meet the selection criteria, 18 of these
have steep radio spectra (hereafter denoted as SSQs). The key advantage of this
sample over most samples of RLQs is the lack of an optical magnitude limit. By
combining the 7C and 3CRR samples, we have investigated the properties of RLQs
as a function of redshift z and radio luminosity L_151.
  We derive the radio luminosity function (RLF) of RLQs and find that the data
are well fitted by a single power-law with slope alpha_1=1.9. We find that
there must be a break in the RLQ RLF at log_10(L_151 / W Hz^-1 sr^-1) < 27, in
order for the models to be consistent with the 7C and 6C source counts. The
z-dependence of the RLF follows a one-tailed gaussian which peaks at z=1.7. We
find no evidence for a decline in the co-moving space density of RLQs at higher
redshifts.
  A positive correlation between the radio and optical luminosities of SSQs is
observed, confirming a result of Serjeant et al. (1998). We are able to rule
out this correlation being due to selection effects or biases in our combined
sample. The radio-optical correlation and best-fit model RLF enable us to
estimate the distribution of optical magnitudes of quasars in samples selected
at low radio frequencies. We conclude that for samples with S_151 < 1 Jy one
must use optical data significantly deeper than the POSS-I limit (R approx 20),
in order to avoid severe incompleteness.Comment: 28 pages with 13 figures. To appear in MNRA
SKA HI end2end simulation
The current status of the HI simulation efforts is presented, in which a self
consistent simulation path is described and basic equations to calculate array
sensitivities are given. There is a summary of the SKA Design Study (SKADS) sky
simulation and a method for implementing it into the array simulator is
presented. A short overview of HI sensitivity requirements is discussed and
expected results for a simulated HI survey are presented.Comment: 7 pages, 6 figues, need skads2009.cls file to late
Desorption From Interstellar Ices
The desorption of molecular species from ice mantles back into the gas phase
in molecular clouds results from a variety of very poorly understood processes.
We have investigated three mechanisms; desorption resulting from H_2 formation
on grains, direct cosmic ray heating and cosmic ray induced photodesorption.
Whilst qualitative differences exist between these processes (essentially
deriving from the assumptions concerning the species-selectivity of the
desorption and the assumed threshold adsorption energies, E_t) all three
processes are found to be potentially very significant in dark cloud
conditions. It is therefore important that all three mechanisms should be
considered in studies of molecular clouds in which freeze-out and desorption
are believed to be important.
  Employing a chemical model of a typical static molecular core and using
likely estimates for the quantum yields of the three processes we find that
desorption by H_2 formation probably dominates over the other two mechanisms.
However, the physics of the desorption processes and the nature of the dust
grains and ice mantles are very poorly constrained. We therefore conclude that
the best approach is to set empirical constraints on the desorption, based on
observed molecular depletions - rather than try to establish the desorption
efficiencies from purely theoretical considerations. Applying this method to
one such object (L1689B) yields upper limits to the desorption efficiencies
that are consistent with our understanding of these mechanisms.Comment: 11 pages, 5 figures, accepted by MNRAS subject to minor revision
  which has been carried ou
The preferentially magnified active nucleus in IRAS F10214+4724 - II. Spatially resolved cold molecular gas
We present JVLA observations of the cold (CO (1-0)) molecular gas in IRAS
F10214+4724, a lensed ULIRG at z=2.3 with an obscured active nucleus. The
galaxy is spatially and spectrally well-resolved in the CO (1-0) emission line.
A CO (1-0) counter-image is detected at the 3-sigma level. Five of the 42 km/s
channels (with >5-sigma detections) are mapped back into the source plane and
their total magnification posterior PDFs sampled. This reveals a roughly linear
arrangement, tentatively a rotating disk. We derive a molecular gas mass of
M_gas = 1.2 +- 0.2 x 10^10 M_sun, assuming a ULIRG L_{CO}-to-M_{gas} conversion
ratio of \alpha = 0.8 M_sun / (K km/s pc^2) that agrees well with the derived
range of \alpha = 0.3 - 1.3 for separate dynamical mass estimates at assumed
inclinations of i = 90 - 30 degrees. Based on the AGN and CO (1-0) peak
emission positions and the lens model, we predict a distortion of the CO
Spectral Line Energy Distribution (SLED) where higher order J lines that may be
partially excited by AGN heating will be preferentially lensed owing to their
smaller solid angles and closer proximity to the AGN and therefore the cusp of
the caustic. Comparison with other lensing inversion results shows that the
narrow line region and AGN radio core in IRAS F10214+4724 are preferentially
lensed by a factor >~ 3 and 11 respectively, relative to the molecular gas
emission. This distorts the global continuum emission Spectral Energy
Distribution (SED) and suggests caution in unsophisticated uses of IRAS
F10214+4724 as an archetype high-redshift ULIRG. We explore two Large Velocity
Gradient (LVG) models, incorporating spatial CO (1-0) and (3-2) information and
present tentative evidence for an extended, low excitation cold gas component
that implies that the total molecular gas mass in IRAS F10214+4724 is a factor
>~2 greater than that calculated using spatially unresolved CO observations.Comment: Dedicated to Steve Rawlings. Accepted for publication in MNRAS. 16
  pages, 11 figure
Erratum: The chemistry of transient molecular cloud cores
We assume that some, but not all, of the structure observed in molecular clouds is associated with transient features which are not bound by self-gravity. We investigate the chemistry of a transient density fluctuation, with properties similar to those of a core within a molecular cloud. We run a multipoint chemical code through a core's condensation from a diffuse medium to its eventual dispersion, over a period of ∼1 Myr. The dynamical description adopted for our study is based on an understanding of a particular mechanism, involving slow-mode wave excitation, for transient structure formation which so far has been studied in detail only with plane-parallel models in which self-gravity has not been included. We find a significant enhancement of the chemical composition of the core material on its return to diffuse conditions, whilst the expansion of the core as it disperses moves this material out to large distances from the core centre. This process transports molecular species formed in the high-density regions out into the diffuse medium. Chemical enrichment of the cloud as a whole also occurs, as other cores of various sizes, life-spans and separations evolve throughout. Enrichment is strongly affected by freeze-out on to dust grains, which takes place in high-density, high visual extinction regions. As the core disperses after reaching its peak density and the visual extinction drops below a critical value, grain mantles are evaporated back into the gas phase, initiating more chemistry. The influence of the sizes, masses and cycle periods of cores will be large both for the level of chemical enrichment of a dark cloud and ultimately for the low-mass star formation rate. The cores in which stars form are almost certainly bound by their self-gravity and are not transient in the sense that the cores on which most of our study is focused are transient. Obviously, enrichment of the chemistry of low-density material will not take place if self-gravity prevents the re-expansion of a core. We also consider the case of a self-gravitating core, by holding its peak density conditions for a further 0.4 Myr. We find that the differences near the peak densities between transient and gravitationally bound cores are generally small, and the resultant column densities for objects near the peak densities do not provide definitive criteria for discriminating between transient and bound cores. However, increases in fractional abundances due to reinjection of mantle-borne species may provide a criterion for detection of a non-bound core
- …
