39 research outputs found
Dislocation Dynamics in an Anisotropic Stripe Pattern
The dynamics of dislocations confined to grain boundaries in a striped system
are studied using electroconvection in the nematic liquid crystal N4. In
electroconvection, a striped pattern of convection rolls forms for sufficiently
high driving voltages. We consider the case of a rapid change in the voltage
that takes the system from a uniform state to a state consisting of striped
domains with two different wavevectors. The domains are separated by domain
walls along one axis and a grain boundary of dislocations in the perpendicular
direction. The pattern evolves through dislocation motion parallel to the
domain walls. We report on features of the dislocation dynamics. The kinetics
of the domain motion are quantified using three measures: dislocation density,
average domain wall length, and the total domain wall length per area. All
three quantities exhibit behavior consistent with power law evolution in time,
with the defect density decaying as , the average domain wall length
growing as , and the total domain wall length decaying as .
The two different exponents are indicative of the anisotropic growth of domains
in the system.Comment: 8 figures: 7 jpeg and 1 pd
Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip
We report a liquid-crystal pattern-formation experiment in which we break the
lateral (translational) symmetry of a nematic medium with a laser-induced
thermal gradient. The work is motivated by an improved measurement (reported
here) of the temperature dependence of the electroconvection threshold voltage
in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with
other broken-symmetry-pattern studies that report a uniform drift, we observe a
strip of counterpropagating rolls that collide at a sink point, and a strong
temporally periodic amplitude modulation within a width of 3-4 rolls about the
sink point. The time dependence of the amplitude at a fixed position is
periodic but displays a nonsinusoidal relaxation-oscillation profile. After
reporting experimental results based on spacetime contours and wavenumber
profiles, along with a measurement of the change in the drift frequency with
applied voltage at a fixed control parameter, we propose some potential
guidelines for a theoretical model based on saddle-point solutions for
Eckhaus-unstable states and coupled complex Ginzburg-Landau equations.
Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200
Persistent global power fluctuations near a dynamic transition in electroconvection
This is a study of the global fluctuations in power dissipation and light
transmission through a liquid crystal just above the onset of
electroconvection.
The source of the fluctuations is found to be the creation and annihilation
of defects. They are spatially uncorrelated and yet temporally correlated. The
temporal correlation is seen to persist for extremely long times. There seems
to be an especially close relation between defect creation/annihilat ion in
electroconvection and thermal plumes in Rayleigh-B\'enard convection
Double Rosensweig instability in a ferrofluid sandwich structure
We consider a horizontal ferrofluid layer sandwiched between two layers of
immiscible non-magnetic fluids. In a sufficiently strong vertical magnetic
field the flat interfaces between magnetic and non-magnetic fluids become
unstable to the formation of peaks. We theoretically investigate the interplay
between these two instabilities for different combinations of the parameters of
the fluids and analyze the evolving interfacial patterns. We also estimate the
critical magnetic field strength at which thin layers disintegrate into an
ordered array of individual drops
Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection
We report quantitative experimental results for the intensity of
noise-induced fluctuations below the critical temperature difference for Rayleigh-B\'enard convection. The structure factor of the fluctuating
convection rolls is consistent with the expected rotational invariance of the
system. In agreement with predictions based on stochastic hydrodynamic
equations, the fluctuation intensity is found to be proportional to
where . The
noise power necessary to explain the measurements agrees with the prediction
for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file
(using uufiles package). Detailed instructions of unpacking are include
Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52
I report on the effects of a periodic modulation of the control parameter on
electroconvection in the nematic liquid crystal I52. Without modulation, the
primary bifurcation from the uniform state is a direct transition to a state of
spatiotemporal chaos. This state is the result of the interaction of four,
degenerate traveling modes: right and left zig and zag rolls. Periodic
modulations of the driving voltage at approximately twice the traveling
frequency are used. For a large enough modulation amplitude, standing waves
that consist of only zig or zag rolls are stabilized. The standing waves
exhibit regular behavior in space and time. Therefore, modulation of the
control parameter represents a method of eliminating spatiotemporal chaos. As
the modulation frequency is varied away from twice the traveling frequency,
standing waves that are a superposition of zig and zag rolls, i.e. standing
rectangles, are observed. These results are compared with existing predictions
based on coupled complex Ginzburg-Landau equations
Direct observation of twist mode in electroconvection in I52
I report on the direct observation of a uniform twist mode of the director
field in electroconvection in I52. Recent theoretical work suggests that such a
uniform twist mode of the director field is responsible for a number of
secondary bifurcations in both electroconvection and thermal convection in
nematics. I show here evidence that the proposed mechanisms are consistent with
being the source of the previously reported SO2 state of electroconvection in
I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I
observe in electroconvection in I52. There are quantitative differences between
the experiment and calculations that only include the twist mode. These
differences suggest that a complete description must include effects described
by the weak-electrolyte model of electroconvection
Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment
Convection structures in binary fluid mixtures are investigated for positive
Soret coupling in the driving regime where solutal and thermal contributions to
the buoyancy forces compete. Bifurcation properties of stable and unstable
stationary square, roll, and crossroll (CR) structures and the oscillatory
competition between rolls and squares are determined numerically as a function
of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where
the oscillation period grows in integer steps as is found
and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
Planform selection in two-layer Benard-Marangoni convection
Benard-Marangoni convection in a system of two superimposed liquids is
investigated theoretically. Extending previous studies the complete
hydrodynamics of both layers is treated and buoyancy is consistently taken into
account. The planform selection problem between rolls, squares and hexagons is
investigated by explicitly calculating the coefficients of an appropriate
amplitude equation from the parameters of the fluids. The results are compared
with recent experiments on two-layer systems in which squares at onset have
been reported.Comment: 17 pages, 7 figures, oscillatory instability included, typos
corrected, references adde
Modulation of Localized States in Electroconvection
We report on the effects of temporal modulation of the driving force on a
particular class of localized states, known as worms, that have been observed
in electroconvection in nematic liquid crystals. The worms consist of the
superposition of traveling waves and have been observed to have unique, small
widths, but to vary in length. The transition from the pure conduction state to
worms occurs via a backward bifurcation. A possible explanation of the
formation of the worms has been given in terms of coupled amplitude equations.
Because the worms consist of the superposition of traveling waves, temporal
modulation of the control parameter is a useful probe of the dynamics of the
system. We observe that temporal modulation increases the average length of the
worms and stabilizes worms below the transition point in the absence of
modulation.Comment: 4 pages, 4 figure