174 research outputs found

    Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium

    Get PDF
    The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)

    Fungi in the Marine Environment: Open Questions and Unsolved Problems.

    Get PDF
    Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles

    Spatial diversity in passive time reversal communications

    Full text link
    A time reversal mirror exploits spatial diversity to achieve spatial and temporal focusing, a useful property for communications in an environment with significant multipath. Taking advantage of spatial diversity involves using a number of receivers distributed in space. This paper presents the impact of spatial diversity in passive time reversal communications between a probe source (PS) and a vertical receive array using at-sea experimental data, while the PS is either fixed or moving at about 4 knots. The performance of two different approaches is compared in terms of output signal-to-noise ratio versus the number of receiver elements: (1) time reversal alone and (2) time reversal combined with adaptive channel equalization. The time-varying channel response due to source motion requires an adaptive channel equalizer such that approach (2) outperforms approach (1) by up to 13 dB as compared to 5 dB for a fixed source case. Experimental results around 3 kHz with a 1 kHz bandwidth illustrate that as few as two or three receivers (i.e., 2 or 4 in array aperture) can provide reasonable performance at ranges of 4.2 and 10 km in 118 in deep water. (c) 2006 Acoustical Society of America

    Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are significant environmental contaminants as they are present naturally as well as anthropogenically in soil, air and water. In spite of their low solubility, PAHs are spread to the environment, and they are present in surface water, industrial effluent or groundwater. Amongst all remediation technologies for treating groundwater contaminated with PAHs, the use of a permeable reactive biobarrier (PRBB) appears to be the most cost-effective, energy efficient, and environmentally sound approach. In this technology, the microorganisms are used as reactive medium to degrade or stabilize the contaminants. The main limits of this approach are that the microorganisms or consortium used for forming the PRBB should show adequate characteristics. They must be retained in the barrier-forming biofilm, and they should also have degradative ability for the target pollutants. The aim of the present work is to evaluate the viability of Arthrobacter viscosus as bioreactive medium for forming PRBB. Initially, the ability of A. viscosus to remove PAHs, benzo[a]anthracene 100 ΞΌM and phenanthrene 100 ΞΌM was evaluated operating in a batch bench-scale bioreactor. In both cases, total benzo[a]anthracene and phenanthrene removals were obtained after 7 and 3 days, respectively. Furthermore, the viability of the microorganisms was evaluated in the presence of chromium in a continuous mode. As a final point, the adhesion of A. viscosus to sepiolite forming a bioreactive material to build PRBB was demonstrated. In view of the attained results, it can be concluded that A. viscosus could be a suitable microorganism to form a bioreactive medium for PAHs remediation.This work has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER Funds (Project CTM 2011-25389). Marta Pazos received financial support under the Ramon y Cajal programme and Marta Cobas under the final project master grant "Campus do Mar Knowledge in depth"

    European propolis is highly active against trypanosomatids including Crithidia fasciculata.

    Get PDF
    Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components

    Effects of Endolithic Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment

    Get PDF
    Biotic stress may operate in concert with physical environmental conditions to limit or facilitate invasion processes while altering competitive interactions between invaders and native species. Here, we examine how endolithic parasitism of an invasive and an indigenous mussel species acts in synergy with abiotic conditions of the habitat. Our results show that the invasive Mytilus galloprovincialis is more infested than the native Perna perna and this difference is probably due to the greater thickness of the protective outer-layer of the shell of the indigenous species. Higher abrasion due to waves on the open coast could account for dissimilarities in degree of infestation between bays and the more wave-exposed open coast. Also micro-scale variations of light affected the level of endolithic parasitism, which was more intense at non-shaded sites. The higher levels of endolithic parasitism in Mytilus mirrored greater mortality rates attributed to parasitism in this species. Condition index, attachment strength and shell strength of both species were negatively affected by the parasites suggesting an energy trade-off between the need to repair the damaged shell and the other physiological parameters. We suggest that, because it has a lower attachment strength and a thinner shell, the invasiveness of M. galloprovincialis will be limited at sun and wave exposed locations where endolithic activity, shell scouring and risk of dislodgement are high. These results underline the crucial role of physical environment in regulating biotic stress, and how these physical-biological interactions may explain site-to-site variability of competitive balances between invasive and indigenous species

    Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages

    Get PDF
    Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine Ξ³-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as β€œPfa synthases”. In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of β€œsecondary lipids” to describe these biosynthetic pathways and products, a proposition consistent with the β€œsecondary metabolite” vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages

    Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds

    Get PDF
    Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The world’s largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ~90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mgβˆ’1 Z. marina dry weight (mean: 5.7 L. zosterae cells mgβˆ’1 Z. marina dry weight Β±1.9 SE) and prevalences ranged from 0–88.9%. Temporarily, abundances varied between 0 and 271 cells mgβˆ’1 Z. marina dry weight (mean: 8.5Β±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae

    Molecular systematics of the marine Dothideomycetes

    Get PDF
    Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. Few marine species are reported from the Dothideomycetidae (e.g. Mycosphaerellaceae, Capnodiales), a group poorly studied at the molecular level. New marine lineages include the Testudinaceae and Manglicola guatemalensis in the Jahnulales. Significantly, most marine Dothideomycetes are intertidal tropical species with only a few from temperate regions on salt marsh plants (Spartina species and Juncus roemerianus), and rarely totally submerged (e.g. Halotthia posidoniae and Pontoporeia biturbinata on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity
    • …
    corecore