78 research outputs found

    Why do millets have slower starch and protein digestibility than other cereals?

    Get PDF
    Background Millet and millet based products are known to have lower starch and protein digestibility rates when compared to other cereals. Understanding, why millets are slowly digestible and how they are affected by processing is important in maintaining their lower starch and protein digestibilities when processed. Scope and approach This review explores the factors that contribute to the lower starch and protein digestibilities of millets and their underlying mechanisms. The effects of different processing methods on millet starch and protein digestibility rates are also discussed. Key findings and conclusions Factors such as starch structural characteristics, starch-protein-lipid interactions, fiber and polyphenols present in millets play significant roles in their hypoglycemic property. The amount and type of fatty acids present in millets significantly affect their starch hydrolysis rates. Unsaturated fatty acids are more effective in reducing starch hydrolysis rates than their saturated counterparts. In-vitro protein digestibility (IVPD) of millets appears to be mostly affected by polyphenols and processing. Simple processing steps such as decortication, germination and fermentation which are mostly applied to millets significantly affect both starch digestibility and IVPD of millets. The adoption of processes that maintain low starch hydrolysis rates and increases protein digestibility in millets should be encouraged

    Development of new microalgae-based sourdough "crostini": functional aspects of Arthrospira platensis (spirulina) addition

    Get PDF
    The aim of this work was to evaluate the influence of Arthrospira platensis F&M-C256 (spirulina) incorporation on the nutritional and functional properties of “crostini”, a leavened bakery product largely consumed in Italy and Europe. Sourdough was used as leavening and fermentation agent and three concentrations of A. platensis F&M-C256 were tested: 2%, 6% and 10% (w/w). Despite a lower volume increase compared to the control, the A. platensis F&M-C256 “crostini” doughs reached a technological appropriate volume after fermentation. At the end of fermentation, no significant differences in microorganisms concentrations were observed. A. platensis F&M-C256 “crostini” showed higher protein content compared to the control. Considering the European Commission Regulation on nutritional claims, “crostini” incorporated with 6% and 10% biomass can be claimed to be a “source of protein”. Six and ten percent A. platensis “crostini” also presented significantly higher antioxidant capacity and phenolics. A significantly lower value of in vitro dry matter and protein digestibility between A. platensis F&M-C256 “crostini” and the control was found. The overall acceptability decreased with increasing A. platensis F&M-C256 addition. The combination of spirulina biomass addition and the sourdough technology led to the development of a novel microalgae-based bakery product with nutritional and functional featuresinfo:eu-repo/semantics/publishedVersio

    Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries

    Get PDF
    Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no studies have already considered the use of the lactic acid fermentation to enhance the functional features of M. communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on murine fibroblasts, and the profile of phenol compounds was characterized. Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3 mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the esterase activities of L. plantarum. Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional food dietary supplements or pharmaceutical preparations

    Studies on Rye ( Secale cereale

    No full text

    Studies on Rye ( Secale cereale

    No full text
    • …
    corecore