12 research outputs found
The Study of Shocks in Three-States Driven-Diffusive Systems: A Matrix Product Approach
We study the shock structures in three-states one-dimensional
driven-diffusive systems with nearest neighbors interactions using a matrix
product formalism. We consider the cases in which the stationary probability
distribution function of the system can be written in terms of superposition of
product shock measures. We show that only three families of three-states
systems have this property. In each case the shock performs a random walk
provided that some constraints are fulfilled. We calculate the diffusion
coefficient and drift velocity of shock for each family.Comment: 15 pages, Accepted for publication in Journal of Statistical
Mechanics: Theory and Experiment (JSTAT
Exact Solution of a Reaction-Diffusion Model with Particle Number Conservation
We analytically investigate a 1d branching-coalescing model with reflecting
boundaries in a canonical ensemble where the total number of particles on the
chain is conserved. Exact analytical calculations show that the model has two
different phases which are separated by a second-order phase transition. The
thermodynamic behavior of the canonical partition function of the model has
been calculated exactly in each phase. Density profiles of particles have also
been obtained explicitly. It is shown that the exponential part of the density
profiles decay on three different length scales which depend on total density
of particles.Comment: 7 pages, REVTEX4, Contents updated and new references added, to
appear in Physical Review
Exact Shock Profile for the ASEP with Sublattice-Parallel Update
We analytically study the one-dimensional Asymmetric Simple Exclusion Process
(ASEP) with open boundaries under sublattice-parallel updating scheme. We
investigate the stationary state properties of this model conditioned on
finding a given particle number in the system. Recent numerical investigations
have shown that the model possesses three different phases in this case. Using
a matrix product method we calculate both exact canonical partition function
and also density profiles of the particles in each phase. Application of the
Yang-Lee theory reveals that the model undergoes two second-order phase
transitions at critical points. These results confirm the correctness of our
previous numerical studies.Comment: 12 pages, 3 figures, accepted for publication in Journal of Physics
Relaxation time in a non-conserving driven-diffusive system with parallel dynamics
We introduce a two-state non-conserving driven-diffusive system in
one-dimension under a discrete-time updating scheme. We show that the
steady-state of the system can be obtained using a matrix product approach. On
the other hand, the steady-state of the system can be expressed in terms of a
linear superposition Bernoulli shock measures with random walk dynamics. The
dynamics of a shock position is studied in detail. The spectrum of the transfer
matrix and the relaxation times to the steady-state have also been studied in
the large-system-size limit.Comment: 10 page
Repelling Random Walkers in a Diffusion-Coalescence System
We have shown that the steady state probability distribution function of a
diffusion-coalescence system on a one-dimensional lattice of length L with
reflecting boundaries can be written in terms of a superposition of double
shock structures which perform biased random walks on the lattice while
repelling each other. The shocks can enter into the system and leave it from
the boundaries. Depending on the microscopic reaction rates, the system is
known to have two different phases. We have found that the mean distance
between the shock positions is of order L in one phase while it is of order 1
in the other phase.Comment: 5 pages, 1 EPS figure, Accepted for publication in PRE (2008
Thermodynamic Phase Diagram and Phonon stability, Electronic and Optical Properties of FeVSb: A DFT study
Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV