13 research outputs found

    Learning perceptually grounded word meanings from unaligned parallel data

    Get PDF
    In order for robots to effectively understand natural language commands, they must be able to acquire meaning representations that can be mapped to perceptual features in the external world. Previous approaches to learning these grounded meaning representations require detailed annotations at training time. In this paper, we present an approach to grounded language acquisition which is capable of jointly learning a policy for following natural language commands such as “Pick up the tire pallet,” as well as a mapping between specific phrases in the language and aspects of the external world; for example the mapping between the words “the tire pallet” and a specific object in the environment. Our approach assumes a parametric form for the policy that the robot uses to choose actions in response to a natural language command that factors based on the structure of the language. We use a gradient method to optimize model parameters. Our evaluation demonstrates the effectiveness of the model on a corpus of commands given to a robotic forklift by untrained users.U.S. Army Research Laboratory (Collaborative Technology Alliance Program, Cooperative Agreement W911NF-10-2-0016)United States. Office of Naval Research (MURIs N00014-07-1-0749)United States. Army Research Office (MURI N00014-11-1-0688)United States. Defense Advanced Research Projects Agency (DARPA BOLT program under contract HR0011-11-2-0008

    Reading Between the Lines: Learning to Map High-level Instructions to Commands

    Full text link
    In this paper, we address the task of mapping high-level instructions to sequences of commands in an external environment. Processing these instructions is challenging—they posit goals to be achieved without specifying the steps required to complete them. We describe a method that fills in missing information using an automatically derived environment model that encodes states, transitions, and commands that cause these transitions to happen. We present an efficient approximate approach for learning this environment model as part of a policygradient reinforcement learning algorithm for text interpretation. This design enables learning for mapping high-level instructions, which previous statistical methods cannot handle. 1

    Reinforcement Learning for Mapping Instructions to Actions

    Full text link
    In this paper, we present a reinforcement learning approach for mapping natural language instructions to sequences of executable actions. We assume access to a reward function that defines the quality of the executed actions. During training, the learner repeatedly constructs action sequences for a set of documents, executes those actions, and observes the resulting reward. We use a policy gradient algorithm to estimate the parameters of a log-linear model for action selection. We apply our method to interpret instructions in two domains — Windows troubleshooting guides and game tutorials. Our results demonstrate that this method can rival supervised learning techniques while requiring few or no annotated training examples. 1
    corecore