30,892 research outputs found

    Topological nature of in-gap bound states in disordered large-gap monolayer transition metal dichalcogenides

    Full text link
    We propose a physical model based on disordered (a hole punched inside a material) monolayer transition metal dichalcogenides (TMDs) to demonstrate a large-gap quantum valley Hall insulator. We find an emergence of bound states lying inside the bulk gap of the TMDs. They are strongly affected by spin-valley coupling, rest- and kinetic- mass terms and the hole size. In addition, in the whole range of the hole size, at least two in-gap bound states with opposite angular momentum, circulating around the edge of the hole, exist. Their topological insulator (TI) feature is analyzed by the Chern number, characterized by spacial distribution of their probabilities and confirmed by energy dispersion curves (Energy vs. angular momentum). It not only sheds light on overcoming low-temperature operating limitation of existing narrow-gap TIs, but also opens an opportunity to realize valley- and spin- qubits.Comment: 5 pages, 5 figures. Feedback is welcome

    Magnetohydrodynamic normal mode analysis of plasma with equilibrium pressure anisotropy

    Full text link
    In this work, we generalise linear magnetohydrodynamic (MHD) stability theory to include equilibrium pressure anisotropy in the fluid part of the analysis. A novel 'single-adiabatic' (SA) fluid closure is presented which is complementary to the usual 'double-adiabatic' (CGL) model and has the advantage of naturally reproducing exactly the MHD spectrum in the isotropic limit. As with MHD and CGL, the SA model neglects the anisotropic perturbed pressure and thus loses non-local fast-particle stabilisation present in the kinetic approach. Another interesting aspect of this new approach is that the stabilising terms appear naturally as separate viscous corrections leaving the isotropic SA closure unchanged. After verifying the self-consistency of the SA model, we re-derive the projected linear MHD set of equations required for stability analysis of tokamaks in the MISHKA code. The cylindrical wave equation is derived analytically as done previously in the spectral theory of MHD and clear predictions are made for the modification to fast-magnetosonic and slow ion sound speeds due to equilibrium anisotropy.Comment: 19 pages. This is an author-created, un-copyedited version of an article submitted for publication in Plasma Physics and Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Generating quadrature squeezed light with dissipative optomechanical coupling

    Full text link
    The recent demonstration of cooling of a macroscopic silicon nitride membrane based on dissipative coupling makes dissipatively coupled optomechanical systems as promising candidates for squeezing. We theoretically show that such a system in a cavity on resonance can yield good squeezing which is comparable to that produced by dispersive coupling. We also report the squeezing resulting from the combined effects of dispersive and dissipative couplings and thus the device can be operated in one regime or the other. We derive the maximal frequency and quadrature angles to observe squeezing for given optomechanical coupling strengths. We also discuss the effects of temperature on squeezing

    Spontaneous Generation of Photons in Transmission of Quantum Fields in PT Symmetric Optical Systems

    Full text link
    We develop a rigorous mathematically consistent description of PT symmetric optical systems by using second quantization. We demonstrate the possibility of significant spontaneous generation of photons in PT symmetric systems. Further we show the emergence of Hanbury-Brown Twiss (HBT) correlations in spontaneous generation. We show that the spontaneous generation determines decisively the nonclassical nature of fields in PT symmetric systems. Our work can be applied to other systems like plasmonic structure where losses are compensated by gain mechanisms.Comment: 4 pages, 5 figure

    An optimized analytical method for the simultaneous detection of iodoform, iodoacetic acid, and other trihalomethanes and haloacetic acids in drinking water

    Get PDF
    An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China
    corecore