110,829 research outputs found
Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K
A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using
high-pressure and high-temperature synthesis. A Rietveld refinement based on
powder x-ray diffraction confirms that the superconductors crystallize in the
K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but
with partially occupied apical oxygen sites. It is found that the
superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y
superconductor with constant carrier doping level, i.e., constant d, is
controlled not only by order/disorder of apical-O atoms but also by Ba content.
Tcmax =98 K is achieved in the material with x=0.6 that reaches the record
value of Tc among the single-layer copper oxide superconductors, and is higher
than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is
Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The
result indicates that another effect surpasses the disorder effect that is
related either to the increased in-plane Cu-O bond length or to elongated
apical-O distance due to Ba substitution with larger cation size. The present
experiment demonstrates that the optimization of local geometry out of the Cu-O
plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
Multiband effects on the conductivity for a multiband Hubbard model
The newly discovered iron-based superconductors have attracted lots of
interests, and the corresponding theoretical studies suggest that the system
should have six bands. In this paper, we study the multiband effects on the
conductivity based on the exact solutions of one-dimensional two-band Hubbard
model. We find that the orbital degree of freedom might enhance the critical
value of on-site interaction of the transition from a metal to an
insulator. This observation is helpful to understand why undoped High-
superconductors are usually insulators, while recently discovered iron-based
superconductors are metal. Our results imply that the orbital degree of freedom
in the latter cases might play an essential role.Comment: 4 pages, 5 figure
- …