61,435 research outputs found

    Weak gravity conjecture constraints on inflation

    Get PDF
    We consider the gravitational correction to the coupling of the scalar fields. Weak gravity conjecture says that the gravitational correction to the running of scalar coupling should be less than the contribution from scalar fields. For instance, a new scale Λ=λ41/2Mp\Lambda=\lambda_4^{1/2}M_p sets a UV cutoff on the validity of the effective λ4ϕ4\lambda_4 \phi^4 theory. Furthermore, this conjecture implies a possible constraint on the inflation model, e.g. the chaotic inflation model might be in the swampland.Comment: 11 pages, 3 figs; monor corrections; some clarifying remarks added and the final version for publication in JHE

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde

    Symbol error rate analysis for M-QAM modulated physical-layer network coding with phase errors

    No full text
    Recent theoretical studies of physical-layer network coding (PNC) show much interest on high-level modulation, such as M-ary quadrature amplitude modulation (M-QAM), and most related works are based on the assumption of phase synchrony. The possible presence of synchronization error and channel estimation error highlight the demand of analyzing the symbol error rate (SER) performance of PNC under different phase errors. Assuming synchronization and a general constellation mapping method, which maps the superposed signal into a set of M coded symbols, in this paper, we analytically derive the SER for M-QAM modulated PNC under different phase errors. We obtain an approximation of SER for general M-QAM modulations, as well as exact SER for quadrature phase-shift keying (QPSK), i.e. 4-QAM. Afterwards, theoretical results are verified by Monte Carlo simulations. The results in this paper can be used as benchmarks for designing practical systems supporting PNC. © 2012 IEEE

    Agegraphic Chaplygin gas model of dark energy

    Full text link
    We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.Comment: 8 page

    Holographic dark energy model with non-minimal coupling

    Full text link
    We find that holographic dark energy model with non-minimally coupled scalar field gives rise to an accelerating universe by choosing Hubble scale as IR cutoff. We show viable range of a non-minimal coupling parameter in the framework of this model.Comment: 7 pages, no figure, corrected some typos, to be published in Europhys. Let

    Gravitational Correction and Weak Gravity Conjecture

    Full text link
    We consider the gravitational correction to the running of gauge coupling. Weak gravity conjecture implies that the gauge theories break down when the gravitational correction becomes greater than the contribution from gauge theories. This observation can be generalized to non-Abelian gauge theories in diverse dimensions and the cases with large extra dimensions.Comment: 8 pages; minor correction and refs adde

    Observational constraints on patch inflation in noncommutative spacetime

    Full text link
    We study constraints on a number of patch inflationary models in noncommutative spacetime using a compilation of recent high-precision observational data. In particular, the four-dimensional General Relativistic (GR) case, the Randall-Sundrum (RS) and Gauss-Bonnet (GB) braneworld scenarios are investigated by extending previous commutative analyses to the infrared limit of a maximally symmetric realization of the stringy uncertainty principle. The effect of spacetime noncommutativity modifies the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. We perform likelihood analyses in terms of inflationary observables using new consistency relations and confront them with large-field inflationary models with potential V \propto \vp^p in two classes of noncommutative scenarios. We find a number of interesting results: (i) the quartic potential (p=4) is rescued from marginal rejection in the class 2 GR case, and (ii) steep inflation driven by an exponential potential (p \to \infty) is allowed in the class 1 RS case. Spacetime noncommutativity can lead to blue-tilted scalar and tensor spectra even for monomial potentials, thus opening up a possibility to explain the loss of power observed in the cosmic microwave background anisotropies. We also explore patch inflation with a Dirac-Born-Infeld tachyon field and explicitly show that the associated likelihood analysis is equivalent to the one in the ordinary scalar field case by using horizon-flow parameters. It turns out that tachyon inflation is compatible with observations in all patch cosmologies even for large p.Comment: 16 pages, 11 figures; v2: updated references, minor corrections to match the Phys. Rev. D versio
    corecore