1,239 research outputs found

    Jeans criterion in a turbulent medium

    Get PDF
    According to the classical Jeans analysis, all the molecular clouds of mass larger than a few 100 M(solar), size larger than about 1pc and kinetic temperature Tk less than 30K are gravitationally unstable. We have shown that in clouds supported by internal supersonic motions, local gravitational instabilities may appear within molecular clouds which are globally stable. The argument is threefold: (1) when the turbulent kinetic energy is included into the internal energy term, the virial equilibrium condition shows that molecular clouds such as those observed, which are gravitationally unstable according to the Jeans criterion, are indeed globally stable if supported by a turbulent velocity field of power spectrum steeper than 3; (2) 2D compressible hydrodynamical simulations show that a supersonic turbulent velocity field generates a turbulent pressure within clouds, the gradients of which stabilize the unstable scales (i.e., the largest scales and the cloud itself) against gravitational collapse; (3) an analysis similar to the Jeans approach but including the turbulent pressure gradient term, gives basically the same results as those given in (1). Clouds of mean density lower than a critical value are found to be stable even though more massive than their Jeans mass. In clouds of mean density larger than that critical value, the gravitational instability appears only over a range of scales smaller than the cloud size, the largest scales being stable. In practice, the observed mean densities are lower than this critical value: the observation of a small number of cores and stars of a few solar masses embedded in clouds of several hundred solar masses can only be understood in terms of small scale density fluctuations of large amplitude generated by the supersonic turbulence which would occasionally overtake the limit of gravitational stability

    Modeling the evolution of infrared luminous galaxies: the influence of the Luminosity-Temperature distribution

    Full text link
    The evolution of the luminous infrared galaxy population is explored using a pure luminosity evolution model which incorporates the locally observed luminosity-temperature distribution for IRAS galaxies. Pure luminosity evolution models in a fixed Λ\LambdaCDM cosmology are fitted to submillimeter (submm) and infrared counts, and backgrounds. It is found that the differences between the locally determined bivariate model and the single variable luminosity function (LF) do not manifest themselves in the observed counts, but rather are primarily apparent in the dust temperatures of sources in flux limited surveys. Statistically significant differences in the redshift distributions are also observed. The bivariate model is used to predict the counts, redshifts and temperature distributions of galaxies detectable by {\it Spitzer}. The best fitting model is compared to the high-redshift submm galaxy population, revealing a median redshift for the total submm population of z=1.80.4+0.9z=1.8^{+0.9}_{-0.4}, in good agreement with recent spectroscopic studies of submillimeter galaxies. The temperature distribution for the submm galaxies is modeled to predict the radio/submm indices of the submm galaxies, revealing that submm galaxies exhibit a broader spread in spectral energy distributions than seen in the local IRAS galaxies.Comment: Accepted for publication in ApJ. Quality of several figures reduced due to size restriction

    Correlations in the Far Infrared Background

    Full text link
    We compute the expected angular power spectrum of the cosmic Far Infrared Background (FIRB). We find that the signal due to source correlations dominates the shot--noise for \ell \la 1000 and results in anisotropies with rms amplitudes ((+1)C/2π)(\sqrt{\ell(\ell+1)C_\ell/2\pi}) between 5% and 10% of the mean for l \ga 150. The angular power spectrum depends on several unknown quantities, such as the UV flux density evolution, optical properties of the dust, biasing of the sources of the FIRB, and cosmological parameters. However, when we require our models to reproduce the observed DC level of the FIRB, we find that the anisotropy is at least a few percent in all cases. This anisotropy is detectable with proposed instruments, and its measurement will provide strong constraints on models of galaxy evolution and large-scale structure at redshifts up to at least z5z \sim5.Comment: 7 pages, 4 figures included, uses emulateapj.sty. More models explored than in original version. Accepted for publication in Ap

    The Subillimeter Properties of Extremely Red Objects in the CUDSS Fields

    Full text link
    We discuss the submillimeter properties of Extremely Red Objects (EROs) in the two Canada-UK Deep Submillimeter Survey (CUDSS) Fields. We measure the mean submillimeter flux of the ERO population (to K < 20.7) and find 0.4 +/- 0.07 mJy for EROs selected by (I-K) > 4.0 and 0.56 +/- 0.09 mJy for EROs selected by (R-K) > 5.3 but, these measurements are dominated by discrete, bright submillimeter sources. We estimate that EROs produce 7-11% of the far-infrared background at 850um. This is substantially less than a previous measurement by Wehner, Barger & Kneib (2002) and we discuss possible reasons for this discrepancy. We show that ERO counterparts to bright submillimeter sources lie within the starburst region of the near-infrared color-color plot of Pozzetti & Mannucci (2000). Finally, we claim that pairs or small groups of EROs with separations of < 10 arcseconds often mark regions of strong submillimeter flux.Comment: 9 pages, 8 figures, accepted for publication in Ap

    Parametric instability in dark molecular clouds

    Get PDF
    The present work investigates the parametric instability of parallel propagating circularly polarized Alfven(pump) waves in a weakly ionized molecular cloud. It is shown that the relative drift between the plasma particles gives rise to the Hall effect resulting in the modified pump wave characteristics. Although the linearized fluid equations with periodic coefficients are difficult to solve analytically, it is shown that a linear transformation can remove the periodic dependence. The resulting linearized equations with constant coefficients are used to derive an algebraic dispersion relation. The growth rate of the parametric instability is a sensitive function of the amplitude of the pump wave as well as to the ratio of the pump and the modified dust-cyclotron frequencies. The instability is insensitive to the plasma-beta The results are applied to the molecular clouds.Comment: 27 page, 5 figures, accepted in Ap

    An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    Get PDF
    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths > 3.5 micron hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all-sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.Comment: 10 pages. 10 JPEG and PNG figures. Uses emulateapj5.sty. To appear in 2003, ApJ, 585, 000 (March 1, 2003

    The Canada-UK Deep Submillimetre Survey: The Survey of the 14-hour field

    Full text link
    We have used SCUBA to survey an area of 50 square arcmin, detecting 19 sources down to a 3sigma sensitivity limit of 3.5 mJy at 850 microns. We have used Monte-Carlo simulations to assess the effect of source confusion and noise on the SCUBA fluxes and positions, finding that the fluxes of sources in the SCUBA surveys are significantly biased upwards and that the fraction of the 850 micron background that has been resolved by SCUBA has been overestimated. The radio/submillmetre flux ratios imply that the dust in these galaxies is being heated by young stars rather than AGN. We have used simple evolution models based on our parallel SCUBA survey of the local universe to address the major questions about the SCUBA sources: (1) what fraction of the star formation at high redshift is hidden by dust? (2) Does the submillimetre luminosity density reach a maximum at some redshift? (3) If the SCUBA sources are proto-ellipticals, when exactly did ellipticals form? However, we show that the observations are not yet good enough for definitive answers to these questions. There are, for example, acceptable models in which 10 times as much high-redshift star formation is hidden by dust as is seen at optical wavelengths, but also acceptable ones in which the amount of hidden star formation is less than that seen optically. There are acceptable models in which very little star formation occurred before a redshift of three (as might be expected in models of hierarchical galaxy formation), but also ones in which 30% of the stars have formed by this redshift. The key to answering these questions are measurements of the dust temperatures and redshifts of the SCUBA sources.Comment: 41 pages (latex), 17 postscript figures, to appear in the November issue of the Astronomical Journa

    Dissecting the Cosmic Infrared Background with 3D Instruments

    Get PDF
    The cosmic infrared background (CIB) consists of emission from distant, dusty, star-forming galaxies. Energetically, the CIB is very important as it contains as much energy as the extragalactic optical background. The nature and evolutionary status of the objects making up the background are, however, unclear. The CIB peaks at ~150 microns, and as such is most effectively studied from space. The limited apertures of space-borne telescopes set the angular resolution that can be attained, and so even Herschel, with its 3.5m diameter, will be confusion-limited at this wavelengths at ~5mJy. The bulk of the galaxies contributing to the CIB are fainter than this, so it is difficult to study them without interferometry. Here we present the results of a preliminary study of an alternative way of probing fainter than the continuum confusion limit using far-IR imaging spectroscopy. An instrument capable of such observations is being planned for SPICA - a proposed Japanese mission with an aperture equivalent to that of Herschel and more than 2 orders of magnitude more sensitive. We investigate the potential of imaging spectrometers to break the continuum confusion limit. We have simulated the capabilities of a spectrometer with modest field of view (2'x2'), moderate spectral resolution (R~1-2000) and high sensitivity. We find that such an instrument is capable of not only detecting line emission from sources with continuum fluxes substantially below the confusion limit, but also of determining their redshifts and, where multiple lines are detected, some emission line diagnostics. We conclude that 3-D imaging spectrometers on cooled far-IR space telescopes will be powerful new tools for extragalactic far-IR astronomy.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore