10 research outputs found
Clinical and MRI measures to identify non-acute MOG-antibody disease in adults
MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG-antibodies is unavailable or shows uncertain results. We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of MOG-antibody disease patients in clinical practice. In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease, AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis, brain and cord MRI at least 6 months from relapse, EDSS on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random-forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease. One hundred sixty-two patients with MOG-antibody disease (99F, mean age: 41 [±14] years, median EDSS: 2 [0-7.5]), 162 with AQP4-neuromyelitis optica spectrum disorder (132F, mean age: 51 [±14] years, median EDSS: 3.5 [0-8]), 189 with multiple sclerosis (132F, mean age: 40 [±10] years, median EDSS: 2 [0-8]) and 152 healthy controls (91F) were studied. In young patients (<34 years), with low disability (EDSS < 3), the absence of Dawson's fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, p < 0.001). In these non-acute patients, a number of brain lesions < 6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, p < 0.001). An EDSS < 3 and the absence of longitudinally extensive lesions in the cervical cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, p < 0.001). A workflow with sequential tests and supporting features has been proposed to guide a better identification of MOG-antibody disease patients. Adult non-acute MOG-antibody disease patients showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information, can guide for further analyses towards diagnosis of MOG-antibody disease in clinical practice
Treatment of MOG antibody associated disorders: results of an international survey
Introduction While monophasic and relapsing forms of myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) are increasingly diagnosed world-wide, consensus on management is yet to be developed. Objective To survey the current global clinical practice of clinicians treating MOGAD. Method Neurologists worldwide with expertise in treating MOGAD participated in an online survey (February–April 2019). Results Fifty-two responses were received (response rate 60.5%) from 86 invited experts, comprising adult (78.8%, 41/52) and paediatric (21.2%, 11/52) neurologists in 22 countries. All treat acute attacks with high dose corticosteroids. If recovery is incomplete, 71.2% (37/52) proceed next to plasma exchange (PE). 45.5% (5/11) of paediatric neurologists use IV immunoglobulin (IVIg) in preference to PE. Following an acute attack, 55.8% (29/52) of respondents typically continue corticosteroids for ≥ 3 months; though less commonly when treating children. After an index event, 60% (31/51) usually start steroid-sparing maintenance therapy (MT); after ≥ 2 attacks 92.3% (48/52) would start MT. Repeat MOG antibody status is used by 52.9% (27/51) to help decide on MT initiation. Commonly used first line MTs in adults are azathioprine (30.8%, 16/52), mycophenolate mofetil (25.0%, 13/52) and rituximab (17.3%, 9/52). In children, IVIg is the preferred first line MT (54.5%; 6/11). Treatment response is monitored by MRI (53.8%; 28/52), optical coherence tomography (23.1%; 12/52) and MOG antibody titres (36.5%; 19/52). Regardless of monitoring results, 25.0% (13/52) would not stop MT. Conclusion Current treatment of MOGAD is highly variable, indicating a need for consensus-based treatment guidelines, while awaiting definitive clinical trials
Treatment of MOG antibody associated disorders: results of an international survey
Introduction While monophasic and relapsing forms of myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) are increasingly diagnosed world-wide, consensus on management is yet to be developed. Objective To survey the current global clinical practice of clinicians treating MOGAD. Method Neurologists worldwide with expertise in treating MOGAD participated in an online survey (February-April 2019). Results Fifty-two responses were received (response rate 60.5%) from 86 invited experts, comprising adult (78.8%, 41/52) and paediatric (21.2%, 11/52) neurologists in 22 countries. All treat acute attacks with high dose corticosteroids. If recovery is incomplete, 71.2% (37/52) proceed next to plasma exchange (PE). 45.5% (5/11) of paediatric neurologists use IV immunoglobulin (IVIg) in preference to PE. Following an acute attack, 55.8% (29/52) of respondents typically continue corticosteroids for >= 3 months; though less commonly when treating children. After an index event, 60% (31/51) usually start steroid-sparing maintenance therapy (MT); after >= 2 attacks 92.3% (48/52) would start MT. Repeat MOG antibody status is used by 52.9% (27/51) to help decide on MT initiation. Commonly used first line MTs in adults are azathioprine (30.8%, 16/52), mycophenolate mofetil (25.0%, 13/52) and rituximab (17.3%, 9/52). In children, IVIg is the preferred first line MT (54.5%; 6/11). Treatment response is monitored by MRI (53.8%; 28/52), optical coherence tomography (23.1%; 12/52) and MOG antibody titres (36.5%; 19/52). Regardless of monitoring results, 25.0% (13/52) would not stop MT. Conclusion Current treatment of MOGAD is highly variable, indicating a need for consensus-based treatment guidelines, while awaiting definitive clinical trials
Treatment of MOG antibody associated disorders: results of an international survey
Introduction While monophasic and relapsing forms of myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) are increasingly diagnosed world-wide, consensus on management is yet to be developed. Objective To survey the current global clinical practice of clinicians treating MOGAD. Method Neurologists worldwide with expertise in treating MOGAD participated in an online survey (February-April 2019). Results Fifty-two responses were received (response rate 60.5%) from 86 invited experts, comprising adult (78.8%, 41/52) and paediatric (21.2%, 11/52) neurologists in 22 countries. All treat acute attacks with high dose corticosteroids. If recovery is incomplete, 71.2% (37/52) proceed next to plasma exchange (PE). 45.5% (5/11) of paediatric neurologists use IV immunoglobulin (IVIg) in preference to PE. Following an acute attack, 55.8% (29/52) of respondents typically continue corticosteroids for >= 3 months; though less commonly when treating children. After an index event, 60% (31/51) usually start steroid-sparing maintenance therapy (MT); after >= 2 attacks 92.3% (48/52) would start MT. Repeat MOG antibody status is used by 52.9% (27/51) to help decide on MT initiation. Commonly used first line MTs in adults are azathioprine (30.8%, 16/52), mycophenolate mofetil (25.0%, 13/52) and rituximab (17.3%, 9/52). In children, IVIg is the preferred first line MT (54.5%; 6/11). Treatment response is monitored by MRI (53.8%; 28/52), optical coherence tomography (23.1%; 12/52) and MOG antibody titres (36.5%; 19/52). Regardless of monitoring results, 25.0% (13/52) would not stop MT. Conclusion Current treatment of MOGAD is highly variable, indicating a need for consensus-based treatment guidelines, while awaiting definitive clinical trials