44 research outputs found

    Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level.</p> <p>Methods</p> <p>Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min).</p> <p>Results</p> <p>Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection.</p> <p>Conclusions</p> <p>Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest.</p

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    U1 small nuclear RNA chimeric ribozymes with substrate specificity for the Rev pre-mRNA of human immunodeficiency virus.

    No full text
    The in vivo effectiveness of ribozymes strongly depends on the correct choice of the vector molecule. High levels of expression, stability, active conformation, and correct cellular localization are the most important features for a ribozyme vector. We have exploited the utilization of the U1 small nuclear RNA (snRNA) as a vector for specifically targeting a ribozyme into the nucleus. The Rev pre-mRNA of human immunodeficiency virus type 1 was chosen as target for testing the activity of the Ul-ribozyme. The catalytic core of the hammerhead motif, plus the recognition sequences, substituted the stem-loop III of the U1 snRNA. The resulting construct displays efficient cleavage activity in vitro. In addition, in the in vivo system of Xenopus laevis oocytes, the Ul-chimeric ribozyme accumulates in large amounts in the nucleus and produces a considerable reduction of Rev pre-mRNA levels. The Rev-specific ribozyme was also inserted in a derivative of the Ul snRNA mutated in the region of pairing with the 5' splice site, such as to match it with the suboptimal splice junction of the Rev precursor. This construct shows more efficient reduction of Rev pre-mRNA in vivo than the wild-type U1 vector

    Use of adenoviral VAI small RNA as a carrier for cytoplasmic delivery of ribozymes.

    No full text
    The in vivo effectiveness of therapeutic RNAs, like antisense molecules and ribozymes, relies on several features: RNA molecules need to be expressed at high levels in the correct cellular compartment as stable and active molecules. The exploitation of "natural" small RNA coding genes as expressing cassettes gives high chances to fulfill these requirements. We have investigated the utilization of the adenoviral VAI RNA as a cytoplasmatic carrier for expressing ribozymes against HIV-1. The conserved 5' leader sequence of HIV was chosen as a target, because it is present in all the viral transcripts and is highly conserved. Hammerhead ribozymes were substituted to different portions of the VAI RNA and the resulting chimera were tested in the in vivo system of Xenopus laevis oocytes for their level of accumulation, cellular compartmentalization, and assembly in specific ribonucleoparticles containing the La antigen. Interesting differences in the activity of the different chimera were found in both in vitro cleavage assays and S100 extracts of injected oocytes where the catalytic activity of the ribozymes in the RNP context can be analyzed

    A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA.

    No full text
    We report that the third intron of the L1 ribosomal protein gene of Xenopus laevis encodes a previously uncharacterized small nucleolar RNA that we called U16. This snRNA is not independently transcribed; instead it originates by processing of the pre-mRNA in which it is contained. Its sequence, localization and biosynthesis are phylogenetically conserved: in the corresponding intron of the human L1 ribosomal protein gene a highly homologous region is found which can be released from the pre-mRNA by a mechanism similar to that described for the amphibian U16 RNA. The presence of a snoRNA inside an intron of the L1 ribosomal protein gene and the phylogenetic conservation of this gene arrangement suggest an important regulatory/functional link between these two components

    Inhibition of human immunodeficiency virus type 1 replication by nuclear chimeric anti-HIV ribozymes in a human T lymphoblastoid cell line

    No full text
    Human immunodeficiency virus (HIV) infection represents one of the most challenging systems for gene therapy. Thanks to the extended knowledge of the molecular biology of the HIV life cycle, many different strategies have been developed including transdominant modifications of HIV proteins, RNA decoys, antisense RNA, ribozymes, and intracellular antibody fragments. In this paper, we have tested in a human T lymphoblastoid cell line the antiviral activity of ribozymes specifically designed to co-localize inside the nucleus with the Rev pre-mRNA before it is spliced and transported to the cytoplasm. This result was obtained by inserting the ribozyme in the spliceosomal U1 small nuclear RNA (snRNA) and in a derivative that has perfect complementarity with the 5' splice site of the Rev pre-mRNA. These ribozymes were tested in human T cell clones and were shown to be very efficient in inhibiting viral replication. Not only were the p24 levels in the culture medium drastically reduced but so were the intracellular HIV transcripts. Control disabled ribozymes enabled us to show the specificity of the ribozyme activity. Therefore, these constructs have potential utility for gene therapy of HIV-1 infection

    Two different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes.

    No full text
    We previously reported that the third intron of the X.laevis L1 ribosomal protein gene encodes for a snoRNA called U16. Here we show that four different introns of the same gene contain another previously uncharacterized snoRNA (U18) which is associated with fibrillarin in the nucleolus and which originates by processing of the pre-mRNA. The pathway of U18 RNA release from the pre-mRNA is the same as the one described for U16: primary endonucleolytic cleavages upstream and downstream of the U18 coding region produce a pre-U18 RNA which is subsequently trimmed to the mature form. Both the gene organization and processing of U18 are conserved in the corresponding genes of X.tropicalis and H.sapiens. The L1 gene thus has a composite structure, highly conserved in evolution, in which sequences coding for a ribosomal protein are intermingled with sequences coding for two different snoRNAs. The nucleolar localization of these different components suggests some common function on ribosome biosynthesis
    corecore