48 research outputs found

    Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters

    Get PDF
    The input of liquid water to terrestrial ecosystems is composed of rain and non-rainfall water (NRW). The latter comprises dew, fog, and the adsorption of atmospheric vapor on soil particle surfaces. Although NRW inputs can be relevant to support ecosystem functioning in seasonally dry ecosystems, they are understudied, being relatively small, and therefore hard to measure. In this study, we apply a partitioning routine focusing on NRW inputs over 1 year of data from large, high-precision weighing lysimeters at a semi-arid Mediterranean site. NRW inputs occur for at least 3 h on 297 d (81 % of the year), with a mean diel duration of 6 h. They reflect a pronounced seasonality as modulated by environmental conditions (i.e., temperature and net radiation). During the wet season, both dew and fog dominate NRW, while during the dry season it is mostly the soil adsorption of atmospheric water vapor. Although NRW contributes only 7.4 % to the annual water input, NRW is the only water input to the ecosystem during 15 weeks, mainly in the dry season. Benefitting from the comprehensive set of measurements at our experimental site, we show that our findings are in line with (i) independent measurements and (ii) independent model simulations forced with (near-) surface energy and moisture measurements. Furthermore, we discuss the simultaneous occurrence of soil vapor adsorption and negative eddy-covariance-derived latent heat fluxes. This study shows that NRW inputs can be reliably detected through high-resolution weighing lysimeters and a few additional measurements. Their main occurrence during nighttime underlines the necessity to consider ecosystem water fluxes at a high temporal resolution and with 24 h coverage.</p

    Bariatric surgery and calcifediol treatment, Gordian knot of severe-obesity-related comorbidities treatment

    Get PDF
    BackgroundObesity (OB) is a chronic metabolic disease with important associated comorbidities and mortality. Vitamin D supplementation is frequently administered after bariatric surgery (BS), so as to reduce OB-related complications, maybe including chronic inflammation.AimThis study aimed to explore relations between vitamin D metabolites and components of the inflammasome machinery in OB before and after BS and their relations with the improvement of metabolic comorbidities.Patients and methodsEpidemiological/clinical/anthropometric/biochemical evaluation was performed in patients with OB at baseline and 6 months after BS. Evaluation of i) vitamin-D metabolites in plasma and ii) components of the inflammasome machinery and inflammatory-associated factors [NOD-like-receptors (NLRs), inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, and cell-cycle and DNA-damage regulators] in peripheral blood mononuclear cells (PBMCs) was performed at baseline and 6 months after BS. Clinical and molecular correlations/associations were analyzed.ResultsSignificant correlations between vitamin D metabolites and inflammasome-machinery components were observed at baseline, and these correlations were significantly reduced 6 months after BS in parallel to a decrease in inflammation markers, fat mass, and body weight. Treatment with calcifediol remarkably increased 25OHD levels, despite 24,25(OH)2D3 remained stable after BS. Several inflammasome-machinery components were associated with improvement in metabolic comorbidities, especially hypertension and dyslipidemia.ConclusionThe beneficial effects of vitamin D on OB-related comorbidities after BS patients are associated with significant changes in the molecular expression of key inflammasome-machinery components. The expression profile of these inflammasome components can be dynamically modulated in PBMCs after BS and vitamin D supplementation, suggesting that this profile could likely serve as a sensor and early predictor of the reversal of OB-related complications after BS

    Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem

    Get PDF
    Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPP). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree–grass ecosystem, we established three landscape-level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green-up and dry-down), slopes during green-up and dry-down period, and seasonal amplitude, were extracted from time series of GPP and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPP was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green-up period. Yet, both fertilized sites senesced earlier during the dry-down period (17–19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPP during the green-up period and a sharper decline in GPP during the dry-down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient–water interaction in such water-limited ecosystems. With the projected warming-drying trend, the positive effects of N fertilization induced by N deposition on GPP may be counteracted by an earlier and faster dry-down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water-limited ecosystems.The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max-Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully acknowledge financial support from the China Scholarship Council. Gerardo Moreno acknowledges financial support from the grant agreement IB16185 of the Regional Government of Extremadura

    Drivers of spatio-temporal variability of carbon dioxide and energyfluxes ina Mediterranean savanna ecosystem

    Get PDF
    To understand what is driving spatial flux variability within a savanna type ecosystem in central Spain, data of three co-located eddy covariance (EC) towers in combination with hyperspectral airborne measurements and footprint analysis were used. The three EC systems show consistent, and unbiased mass and energy fluxes. Nevertheless, instantaneous between-tower flux differences i.e. paired half hourly fluxes, showed large variability. A period of 13 days around an airborne hyperspectral campaign was analyzed and proved that betweentower differences can be associated to biophysical properties of the sampled footprint areas. At high photosynthetically active radiation (PAR) net ecosystem exchange (NEE) was mainly controlled by chlorophyll content of the vegetation (estimated through MERIS Terrestrial Chlorophyll Index (MTCI)), while sensible heat flux (H) was driven by surface temperature. The spatial variability of biophysical properties translates into flux variability depending on the location and size of footprints. For H, negative correlations were found with surface temperature for between-tower differences, and for individual towers in time, meaning that higher H was observed at lower surface temperatures. High aerodynamic conductance of tree canopies reduces the canopy surface temperature and the excess energy is relieved as H. Therefore, higher tree canopy fractions yielded to lower surface temperatures and at the same time to higher H. For NEE, flux differences between towers were correlated to differences in MTCI of the respective footprints, showing that higher chlorophyll content of the vegetation translates into more photosynthetic CO2 uptake, which controls NEE variability. Between-tower differences of latent heat fluxes (LE) showed no consistent correlation to any vegetation index (VI), or structural parameter e.g. tree-grass-fraction. This missing correlation is most likely caused by the large contribution of soil evaporation to ecosystem LE, which is not captured by any of the biophysical and structural properties. To analyze if spatial heterogeneity influences the uncertainty of measured fluxes three different measures of uncertainty were compared: the standard deviation of the marginal distribution sampling (MDS), the two-towerapproach (TTA), and the variance of the covariance (RE). All three uncertainty estimates had similar means and distributions at the individual towers while the methods were significantly different to each other. The uncertainty estimates increased from RE over TTA to MDS, indicating that different components like space, time, meteorology, and phenology are factors, which affect the uncertainty estimates. Differences between uncertainty estimates from the RE and TTA indicate that spatial heterogeneity contributes significantly to the ecosystem-flux uncertaintyinfo:eu-repo/semantics/publishedVersio

    CUL-2<sup>LRR-1</sup> and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis

    Get PDF
    Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2(LRR-1) associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2(LRR1) as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2(LRR-1), but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically

    The three major axes of terrestrial ecosystem function.

    Full text link
    The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8

    A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis

    Get PDF
    We report a medium‐throughput drug‐screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood–brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug‐screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere

    High-Throughput Sequencing of RNA Silencing-Associated Small RNAs in Olive (Olea europaea L.)

    Get PDF
    Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive
    corecore