6 research outputs found
A novel mutation L260P of the steroidogenic acute regulatory protein gene in three unrelated patients of Swiss ancestry with congenital lipoid adrenal hyperplasia
CONTEXT: Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE: We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Mullerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS: StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS: These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population
Defects of steroidogenesis
In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these blocks