213 research outputs found
The Corporate Governance Machine
The conventional view of corporate governance is that it is a neutral set of processes and practices that govern how a company is managed. We demonstrate that this view is profoundly mistaken: in the United States, corporate governance has become a “system” composed of an array of institutional players, with a powerful shareholderist orientation. Our original account of this “corporate governance machine” generates insights about the past, present, and future of corporate governance. As for the past, we show how the concept of corporate governance developed alongside the shareholder primacy movement. This relationship is reflected in the common refrain of “good governance” that pervades contemporary discourse and the maturation of corporate governance as an industry oriented toward serving shareholders and their interests. As for the present, our analysis explains why the corporate social responsibility movement transformed into shareholder value-oriented ESG, stakeholder capitalism became relegated to a new separate form of entity known as the benefit corporation, and public company boards of directors became homogenized across industries. As for the future, our analysis suggests that absent a major paradigm shift that would force multiple institutional gatekeepers to switch their orientation, advocacy pushing corporations to consider the interests of employees, communities, and the environment will likely fail, unless such effort is framed as advancing shareholder interests
Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory
A linear algebraic method named the shifted
conjugate-orthogonal-conjugate-gradient method is introduced for large-scale
electronic structure calculation. The method gives an iterative solver
algorithm of the Green's function and the density matrix without calculating
eigenstates.The problem is reduced to independent linear equations at many
energy points and the calculation is actually carried out only for a single
energy point. The method is robust against the round-off error and the
calculation can reach the machine accuracy. With the observation of residual
vectors, the accuracy can be controlled, microscopically, independently for
each element of the Green's function, and dynamically, at each step in
dynamical simulations. The method is applied to both semiconductor and metal.Comment: 10 pages, 9 figures. To appear in Phys. Rev. B. A PDF file with
better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses
Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory
For large scale electronic structure calculation, the Krylov subspace method
is introduced to calculate the one-body density matrix instead of the
eigenstates of given Hamiltonian. This method provides an efficient way to
extract the essential character of the Hamiltonian within a limited number of
basis set. Its validation is confirmed by the convergence property of the
density matrix within the subspace. The following quantities are calculated;
energy, force, density of states, and energy spectrum. Molecular dynamics
simulation of Si(001) surface reconstruction is examined as an example, and the
results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of
the Phys. Soc. of Japa
Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
Model based analysis of fMRI-data: Applying the sSoTS framework to the neural basic of preview search.
The current work aims to unveil the neural circuits under- lying visual search over time and space by using a model-based analysis of behavioural and fMRI data. It has been suggested by Watson and Humphreys [31] that the prioritization of new stimuli presented in our visual field can be helped by the active ignoring of old items, a process they termed visual marking. Studies using fMRI link the marking pro- cess with activation in superior parietal areas and the precuneus [4, 18, 27, 26]. Marking has been simulated previously using a neural-level ac- count of search, the spiking Search over Time and Space (sSoTS) model, which incorporates inhibitory as well as excitatory mechanisms to guide visual selection. Here we used sSoTS to help decompose the fMRI signals found in a preview search procedure, when participants search for a new target whilst ignoring old distractors. The time course of activity linked to inhibitory and excitatory processes in the model was used as a regres- sor for the fMRI data. The results showed that different neural networks were correlated with top-down excitation and top-down inhibition in the model, enabling us to fractionate brain regions previously linked to vi- sual marking. We discuss the contribution of model-based analysis for decomposing fMRI data
Digitalized service multinationals and international business theory
Banalieva and Dhanaraj argue that digital service multinationals (DSMNCs) possess a new category of firm-specific advantage (FSA), the network advantage, and that, contrary to extant theory, they use networks as a mode of governance. I review the business models used by DSMNCs, compare them to non-digital ones, and explore what we can learn about them from extant IB theory. I conclude that network advantages are not a new category of FSAs, that networks are not a mode of governance, and that their use by DSMNCs is well explained by extant theory
Inhibition of STAT3 signaling prevents vascular smooth muscle cell proliferation and neointima formation
Dedifferentiation, migration, and proliferation of resident vascular smooth muscle cells (SMCs) are key components of neointima formation after vascular injury. Activation of signal transducer and activator of transcription-3 (STAT3) is suggested to be critically involved in this process, but the complex regulation of STAT3-dependent genes and the functional significance of inhibiting this pathway during the development of vascular proliferative diseases remain elusive. In this study, we demonstrate that STAT3 was activated in neointimal lesions following wire-induced injury in mice. Phosphorylation of STAT3 induced trans-activation of cyclin D1 and survivin in SMCs in vitro and in neointimal cells in vivo, thus promoting proliferation and migration of SMCs as well as reducing apoptotic cell death. WP1066, a highly potent inhibitor of STAT3 signaling, abrogated phosphorylation of STAT3 and dose-dependently inhibited the functional effects of activated STAT3 in stimulated SMCs. The local application of WP1066 via a thermosensitive pluronic F-127 gel around the dilated arteries significantly inhibited proliferation of neointimal cells and decreased the neointimal lesion size at 3 weeks after injury. Even though WP1066 application attenuated the injury-induced up-regulation of the chemokine RANTES at 6 h after injury, there was no significant effect on the accumulation of circulating cells at 1 week after injury. In conclusion, these data identify STAT3 as a key molecule for the proliferative response of SMC and neointima formation. Moreover, inhibition of STAT3 by the potent and specific compound WP1066 might represent a novel and attractive approach for the local treatment of vascular proliferative diseases
Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation
Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", with endothelial cell dysfunction, i.e., apoptosis, proliferation, interaction with smooth muscle cells and transdifferentiation
- …