1,324 research outputs found

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Fractal escapes in Newtonian and relativistic multipole gravitational fields

    Full text link
    We study the planar motion of test particles in gravitational fields produced by an external material halo, of the type found in many astrophysical systems, such as elliptical galaxies and globular clusters. Both the Newtonian and the general-relativistic dynamics are examined, and in the relativistic case the dynamics of both massive and massless particles are investigated. The halo field is given in general by a multipole expansion; we restrict ourselves to multipole fields of pure order, whose Newtonian potentials are homogeneous polynomials in cartesian coordinates. A pure (n)-pole field has (n) different escapes, one of which is chosen by the particle according to its initial conditions. We find that the escape has a fractal dependency on the initial conditions for (n>2) both in the Newtonian and the relativistic cases for massive test particles, but with important differences between them. The relativistic motion of massless particles, however, was found to be regular for all the fields we could study. The box-counting dimension was used in each case to quantify the sensitivity to initial conditions which arises from the fractality of the escape route.Comment: 17 pages, 7 figures, uses REVTE

    Exploring AdS Waves Via Nonminimal Coupling

    Full text link
    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a non-perturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity.Comment: 26 pages, 1 figure. Minor change

    Suppression of left-handed properties in disordered metamaterials

    Full text link
    We study the effect of disorder on the effective magnetic response of composite left-handed metamaterials and their specific properties such as negative refraction. We show that relatively weak disorder in the split-ring resonators can reduce and even completely eliminate the frequency domain where the composite material demonstrates the left-handed properties. We introduce the concept of the order parameter to describe novel physics of this effect.Comment: 4 pages, 2 figure

    Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films

    Full text link
    Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure
    corecore