14 research outputs found
Shock/boundary-layer interactions: Possible sources of unsteadiness
International audienceIn shock induced separation, the question of the origin of the low frequency motions affecting the shock waves remains controversial. According to the situations, it may be argued that upstream or downstream flow conditions can provide a likely explanation. A short review of this question is proposed, mainly based on the analysis of existing experimental work. One of the recent interpretations is the role which can be played by the long turbulent superstructures of the incoming boundary layer. This is shown to be a valid interpretation in a limited number of cases. An experiment in which perturbations of the same type are formed is shown to bring no modification to an oblique shock reflection interaction. The different cases are discussed and an assessment of the generality of their results is proposed.
Investigation by Particle Image Velocimetry Measurements of Oblique Shock Reflection with Separation
Investigation of the unsteadiness of a shock-reflection interaction with time-resolved particle image velocimetry
The spatio-temporal dynamics of an impinging shock/boundary layer interaction atMach 2 and under incipient separation conditions, has been investigated experimentally by means of high-speed particle image velocimetry (PIV). The available PIV acquisition rate of up to 20 kHz permits a time-resolved characterization of the interaction. The dynamics of different flow regions—notably the separation region and the reflected shock—were quantified by means of temporal auto-correlation fields and pseudo-spectral analysis. The PIV data further enable to investigate the relationship between spatially extended flow features, such as shock position and bubble size, as well as the influence of the upstream boundary layer. The results confirm earlier studies that there is an important upstream effect on the present incipient interaction.Aerodynamics and Wind EnergyApplied Science
Wp-1 reference cases of laminar and turbulent interactions
In order to be able to judge the effectiveness of transition induction in WP-2, reference flow cases were planned in WP-1. There are two obvious reference cases—a fully laminar interaction and a fully turbulent interaction. Here it should be explained that the terms “laminar” and “turbulent” interaction refer to the boundary layer state at the beginning of interaction only. There are two basic configurations of shock wave boundary layer interaction and these are a part of the TFAST project. One is the normal shock wave, which typically appears at the transonic wing and on the turbine cascade. The characteristic incipient separation Mach number range is about M = 1.2 in the case of a laminar boundary layer and about M = 1.32 in the case of turbulent boundary layer. The second typical flow case is the oblique shock wave reflection. The most characteristic case in European research is connected to the 6th FP IP HISAC project concerning a supersonic business jet. The design speed of this airplane is M = 1.6. Therefore the TFAST consortium decided to use this Mach number as the basic case. Pressure disturbance at this Mach number is not very high and can be compared to the disturbance of the normal shock at the incipient separation Mach number mentioned earlier. As mentioned earlier, shock reflection at M = 1.6 may be related to incipient separation. Therefore two additional test cases were planned with different Mach numbers. ITAM conducted an M = 1.5 test case, and TUD an M = 1.7 test case. These partners have also previously made very specialized and successful contributions to the UFAST project
Wp-1 reference cases of laminar and turbulent interactions
In order to be able to judge the effectiveness of transition induction in WP-2, reference flow cases were planned in WP-1. There are two obvious reference cases—a fully laminar interaction and a fully turbulent interaction. Here it should be explained that the terms “laminar” and “turbulent” interaction refer to the boundary layer state at the beginning of interaction only. There are two basic configurations of shock wave boundary layer interaction and these are a part of the TFAST project. One is the normal shock wave, which typically appears at the transonic wing and on the turbine cascade. The characteristic incipient separation Mach number range is about M = 1.2 in the case of a laminar boundary layer and about M = 1.32 in the case of turbulent boundary layer. The second typical flow case is the oblique shock wave reflection. The most characteristic case in European research is connected to the 6th FP IP HISAC project concerning a supersonic business jet. The design speed of this airplane is M = 1.6. Therefore the TFAST consortium decided to use this Mach number as the basic case. Pressure disturbance at this Mach number is not very high and can be compared to the disturbance of the normal shock at the incipient separation Mach number mentioned earlier. As mentioned earlier, shock reflection at M = 1.6 may be related to incipient separation. Therefore two additional test cases were planned with different Mach numbers. ITAM conducted an M = 1.5 test case, and TUD an M = 1.7 test case. These partners have also previously made very specialized and successful contributions to the UFAST project